参考文献[1]
KrittanawongC, ZhangH, WangZ, et al. Artificial intelligence in precision cardiovascular medicine[J]. J Am Coll Cardiol, 2017, 69(21):2657-2664. .
[2]
WangS, ZhangS, LiZ, et al. Automatic digital ECG signal extraction and normal QRS recognition from real scene ECG images[J]. Comput Methods Programs Biomed, 2020,187:105254. .
[3]
CostaCM, SilvaIS, de SousaRD, et al. The association between reconstructed phase space and Artificial Neural Networks for vectorcardiographic recognition of myocardial infarction[J]. J Electrocardiol, 2018, 51(3):443-449. .
[4]
HannunAY, RajpurkarP, HaghpanahiM, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network[J]. Nat Med, 2019, 25(1):65-69. .
[5]
StrodthoffN, StrodthoffC. Detecting and interpreting myocardial infarction using fully convolutional neural networks[J]. Physiol Meas, 2019, 40(1):015001. .
[6]
WuCC, HsuWD, IslamMM, et al. An artificial intelligence approach to early predict non-ST-elevation myocardial infarction patients with chest pain[J]. Comput Methods Programs Biomed, 2019,173:109-117. .
[7]
AttiaZI, KapaS, Lopez-JimenezF, et al. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram[J]. Nat Med, 2019, 25(1):70-74. .
[8]
TamboriniG, PiazzeseC, LangRM, et al. Feasibility and accuracy of automated software for transthoracic three-dimensional left ventricular volume and function analysis: comparisons with two-dimensional echocardiography, three-dimensional transthoracic manual method, and cardiac magnetic resonance imaging[J]. J Am Soc Echocardiogr, 2017, 30(11):1049-1058. .
[9]
KusunoseK, AbeT, HagaA, et al. A deep learning approach for assessment of regional wall motion abnormality from echocardiographic images[J]. JACC Cardiovasc Imaging, 2020, 13(2Pt 1):374-381. .
[10]
KnackstedtC, BekkersSC, SchummersG, et al. Fully automated versus standard tracking of left ventricular ejection fraction and longitudinal strain: the FAST-EFs multicenter study[J]. J Am Coll Cardiol, 2015, 66(13):1456-1466. .
[11]
MoghaddasiH, NourianS. Automatic assessment of mitral regurgitation severity based on extensive textural features on 2D echocardiography videos[J]. Comput Biol Med, 2016,73:47-55. .
[12]
NarulaS, ShameerK, Salem OmarAM, et al. Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography[J]. J Am Coll Cardiol, 2016, 68(21):2287-2295. .
[13]
SenguptaPP, HuangYM, BansalM, et al. Cognitive machine-learning algorithm for cardiac imaging: a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy[J]. Circ Cardiovasc Imaging, 2016, 9(6): e004330. .
[14]
ZhangJ, GajjalaS, AgrawalP, et al. Fully automated echocardiogram interpretation in clinical practice[J]. Circulation, 2018, 138(16):1623-1635. .
[15]
TabassianM, SunderjiI, ErdeiT, et al. Diagnosis of heart failure with preserved ejection fraction: machine learning of spatiotemporal variations in left ventricular deformation[J]. J Am Soc Echocardiogr, 2018, 31(12):1272-1284.e9. .
[16]
CikesM, Sanchez-MartinezS, ClaggettB, et al. Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy[J]. Eur J Heart Fail, 2019, 21(1):74-85. .
[17]
WolterinkJM, LeinerT, ViergeverMA, et al. Generative adversarial networks for noise reduction in low-dose CT[J]. IEEE Trans Med Imaging, 2017, 36(12):2536-2545. .
[18]
WolterinkJM, LeinerT, de VosBD, et al. Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks[J]. Med Image Anal, 2016,34:123-136. .
[19]
DeyD, GaurS, OvrehusKA, et al. Integrated prediction of lesion-specific ischaemia from quantitative coronary CT angiography using machine learning: a multicentre study[J]. Eur Radiol, 2018, 28(6):2655-2664. .
[20]
HanD, LeeJH, RizviA, et al. Incremental role of resting myocardial computed tomography perfusion for predicting physiologically significant coronary artery disease: a machine learning approach[J]. J Nucl Cardiol, 2018, 25(1):223-233. .
[21]
KolossváryM, KarádyJ, SzilveszterB, et al. Radiomic features are superior to conventional quantitative computed tomographic metrics to identify coronary plaques with Napkin-ring sign[J]. Circ Cardiovasc Imaging, 2017, 10(12): e006843. .
[23]
BrattA, KimJ, PollieM, et al. Machine learning derived segmentation of phase velocity encoded cardiovascular magnetic resonance for fully automated aortic flow quantification[J]. J Cardiovasc Magn Reson, 2019, 21(1):1. .
[24]
SuinesiaputraA, SanghviMM, AungN, et al. Fully-automated left ventricular mass and volume MRI analysis in the UK Biobank population cohort: evaluation of initial results[J]. Int J Cardiovasc Imaging, 2018, 34(2):281-291. .
[25]
DawesT, de MarvaoA, ShiW, et al. Machine learning of three-dimensional right ventricular motion enables outcome prediction in pulmonary hypertension: a cardiac MR imaging study[J]. Radiology, 2017, 283(2):381-390. .
[26]
SamadMD, WehnerGJ, ArbabshiraniMR, et al. Predicting deterioration of ventricular function in patients with repaired tetralogy of Fallot using machine learning[J]. Eur Heart J Cardiovasc Imaging, 2018, 19(7):730-738. .
[27]
KnottKD, SeraphimA, AugustoJB, et al. The prognostic significance of quantitative myocardial perfusion: an artificial intelligence-based approach using perfusion mapping[J]. Circulation, 2020, 141(16):1282-1291. .
[28]
DeyD, GaurS, OvrehusKA, et al. Integrated prediction of lesion-specific ischaemia from quantitative coronary CT angiography using machine learning: a multicentre study[J]. Eur Radiol, 2018, 28(6):2655-2664. .
[29]
BetancurJ, CommandeurF, MotlaghM, et al. Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: a multicenter study[J]. JACC Cardiovasc Imaging, 2018, 11(11):1654-1663. .
[30]
DuT, XieL, LiuX, et al. TCT-235 intelligent recognition of coronary angiography by deep learning technology: a novel computer-aided diagnostic system[J]. J Am Coll Cardiol, 2018, 72(13):B98. .
[31]
ChoH, LeeJG, KangSJ, et al. Angiography-based machine learning for predicting fractional flow reserve in intermediate coronary artery lesions[J]. J Am Heart Assoc, 2019, 8(4):e011685. .
[32]
JunTJ, KangSJ, LeeJG, et al. Automated detection of vulnerable plaque in intravascular ultrasound images[J]. Med Biol Eng Comput, 2019, 57(4):863-876. .
[33]
NamHS, KimCS, LeeJJ, et al. Automated detection of vessel lumen and stent struts in intravascular optical coherence tomography to evaluate stent apposition and neointimal coverage[J]. Med Phys, 2016, 43(4):1662. .
[34]
SuS, HuZ, LinQ, et al. An artificial neural network method for lumen and media-adventitia border detection in IVUS[J]. Comput Med Imaging Graph, 2017,57:29-39. .
[35]
SwaminathanRV, RaoSV. Robotic-assisted transradial diagnostic coronary angiography[J]. Catheter Cardiovasc Interv, 2018, 92(1):54-57. .
[36]
MahmudE, NaghiJ, AngL, et al. Demonstration of the safety and feasibility of robotically assisted percutaneous coronary intervention in complex coronary lesions: results of the CORA-PCI study (Complex Robotically Assisted Percutaneous Coronary Intervention)[J]. JACC Cardiovasc Interv, 2017, 10(13):1320-1327. .
[37]
ZhouXH, BianGB, XieXL, et al. Qualitative and quantitative assessment of technical skills in percutaneous coronary intervention: in vivo porcine studies[J]. IEEE Trans Biomed Eng,2020,67(2):353-364. .
[38]
ZhouXH, BianGB, XieXL,et al. Analysis of interventionalists′ natural behaviors for recognizing motion patterns of endovascular tools during percutaneous coronary interventions[J]. IEEE Trans Biomed Circuits Syst,2019,13(2):330-342. .
[39]
SardarP, AbbottJD, KunduA, et al. Impact of artificial intelligence on interventional cardiology: from decision-making aid to advanced interventional procedure assistance[J]. JACC Cardiovasc Interv, 2019, 12(14):1293-1303. .
[40]
LindholmD, HolzmannM. Machine learning for improved detection of myocardial infarction in patients presenting with chest pain in the emergency department [J]. J Am Coll Cardiol,2018,71 (11):A225. .
[41]
ChoIJ, SungJM, KimHC, et al. Development and external validation of a deep learning algorithm for prognostication of cardiovascular outcomes[J]. Korean Circ J, 2020, 50(1):72-84. .
[42]
MotwaniM, DeyD, BermanDS, et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis[J]. Eur Heart J, 2017, 38(7):500-507. .
[43]
KwonJM, KimKH, JeonKH, et al. Artificial intelligence algorithm for predicting mortality of patients with acute heart failure[J]. PLoS One, 2019, 14(7):e0219302. .
[44]
LacsonRC, BakerB, SureshH, et al. Use of machine-learning algorithms to determine features of systolic blood pressure variability that predict poor outcomes in hypertensive patients[J]. Clin Kidney J, 2019, 12(2):206-212. .
[45]
Garcia-VidalC, SanjuanG, Puerta-AlcaldeP, et al. Artificial intelligence to support clinical decision-making processes[J]. EBioMedicine, 2019,46:27-29. .
[46]
TerenzianiP, MontaniS, BottrighiA, et al. Applying artificial intelligence to clinical guidelines: the GLARE approach[J]. Stud Health Technol Inform, 2008,139:273-282.
[47]
SéroussiB, BouaudJ, ChatellierG. Modeling patient-specific therapeutic strategy in the guideline-based management of a chronic disease[J]. Stud Health Technol Inform, 2003,95:537-542.