综述
多参数核磁引导的前列腺靶向穿刺应用进展
国际生物医学工程杂志, 2021,44(3) : 241-244,261. DOI: 10.3760/cma.j.cn121382-20210105-00312
摘要

前列腺系统穿刺仍是穿刺的标准方法,随着多参数磁共振成像技术(mpMRI)及其评分系统的不断发展,磁共振成像技术(MRI)靶向的前列腺穿刺正在逐渐替代系统穿刺的传统地位。前列腺影像报告和数据系统(PI-RADS)是临床最常用的MRI评分系统。在前列腺特异性抗原(PSA)异常的PI-RADS阴性患者前列腺癌阴性率达90.8%(95%CI:88.1%~93.1%),PI-RADS 3分、4分和5分的患者临床有意义前列腺癌的诊出率分别为20.9%、58.3%和80.7%。这就意味着MRI靶向穿刺在减少无必要穿刺的基础上能更有效检出临床上有意义的前列腺癌。MRI靶向穿刺包括MRI直接引导下穿刺(MRI-TB)、软件为基础的经直肠超声(MRI-TRUS)融合靶向穿刺(FUS-TB)和认知融合靶向穿刺(COG-TB),三种方法均为有效的靶向穿刺方法。MRI靶向前列腺穿刺优于系统穿刺,由于MRI的假阴性、穿刺技术和装别等限制,MRI靶向穿刺仍不能完全替代系统穿刺。因此靶向联合系统穿刺是可见未来的趋势。

引用本文: 朱识淼, 田晶, 牛远杰. 多参数核磁引导的前列腺靶向穿刺应用进展 [J] . 国际生物医学工程杂志, 2021, 44(3) : 241-244,261. DOI: 10.3760/cma.j.cn121382-20210105-00312.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

版权归中华医学会所有。

未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。

0 引言

核磁共振成像(magnetic resonance imaging, MRI)/经直肠超声(transrectal ultrasonography, TRUS)引导靶向融合穿刺活检的倚天剑便是多参数核磁成像(multi-parameter magnetic resonance imaging, mpMRI)[1,2,3,4,5]。随着MRI分辨率的不断进步以及MRI评分系统的不断演进[6],MRI靶向前列腺穿刺也在逐步威胁着前列腺系统穿刺这个金标准,MRI-TRUS融合靶向穿刺(MRI-TRUS fusion biopsy,FUS-TB)是MRI靶向前列腺穿刺中临床应用最广泛的方法,MRI直接引导下的前列腺穿刺(in-bore biopsy,MRI-TB)因受限较多,临床应用范围不广。除此之外,还有认知融合靶向穿刺(cognitive fusion biopsy,COG-TB),因其操作受到术者的主观、读片经验和穿刺经验等因素影响,可重复性较差;但因其对设备需求相对较低、耗时较短,因此在临床实际工作中应用较为广泛[7,8,9,10]。本文介绍了MRI在前列腺癌诊断中的价值,选择MRI做靶向前列腺穿刺的原因,MRI靶向前列腺穿刺的方式以及其在前列腺癌诊断中的优势和不足,以期为临床医生提供一些临床实践参考。

1 MRI在前列腺癌诊断中的价值
1.1 mpMRI在前列腺癌的应用价值

众多评价mpMRI在前列腺诊断价值的研究中,PROMIS研究是设计最合理、纳入人群最多、纳入人群最均衡的一个研究[11]。在PROMIS结果出来的相当一段时间没有任何指南认为初次前列腺穿刺前的mpMRI有必要性。PROMIS是一个多中心、自身成对对照的验证性研究,以经会阴模板饱和前列腺穿刺(template prostate mapping biopsy,TPM-biopsy)做为前列腺癌确诊的标准,来比较mpMRI和TRUS对前列腺癌诊断的灵敏度和特异度。在所有前列腺特异性抗原(prostate specific antibody, PSA)大于15 ng/ml的患者中,符合试验准入条件的有576例,其中230例确诊为临床有意义的前列腺癌,确诊率为40%(总前列腺癌确诊率71%)。mpMRI诊断了其中93%(95%CI:88%~96%)临床有意义前列腺癌,TRUS-biopsy仅诊断了其中48%(95%CI:42%~55%)临床有意义前列腺癌;但mpMRI假阳性率也偏高,在mpMRI的前列腺影像报告和数据系统(prostate imaging reporting and data system, PI-RADS)评分2分及以下的患者中,只占到非临床有意义前列腺癌患者的41%。PI-RADS评分1分的23例患者仅1例临床有意义前列腺癌,135例2分患者中16例临床有意义前列腺癌(11.9%),163例3分的患者中34例临床有意义前列腺癌(20.9%),120例4分的患者中70例临床有意义前列腺癌(58.3%),135例5分的患者中109例临床有意义前列腺癌(80.7%)。与PROMIS结果类似,系统综述报道的mpMRI灵敏度约为58%~96%,其特异度约为23%~87%[12]

总结mpMRI的临床意义,即mpMRI有异常发现时,其对临床有意义前列腺癌的诊断需要前列腺穿刺活检支持。如mpMRI没有发现异常,那么患临床有意义前列腺癌的概率就比较小。在荟萃分析中,Sathianathen等[13]也总结mpMRI阴性结果的可靠程度,PI-RADS/Likert 1-2的患者穿刺阴性率为90.8%(95%CI:88.1%~93.1%),PI-RADS/Likert 1-3的患者穿刺阴性率为86.8%(95%CI:80.1%~92.4%)。这也说明mpMRI可排除绝大多数的临床有意义前列腺癌。随着核磁技术的不断发展,这一准确性会越来越高。当然也有一些肿瘤可能被mpMRI遗漏,Johnson等[14]回顾性总结了588例有术前3.0T mpMRI且根治术后大病理切片确诊的前列腺癌患者(包括1 359个病灶)数据,经过分析其病理特征发现最大横径≤1.0 cm、Gleason评分3+3分和多灶性肿瘤被mpMRI忽略的可能性较大。

1.2 强化MRI在前列腺癌的应用价值

荟萃分析已经总结了mpMRI动态强化相(dynamic contrast-enhanced imaging,DCE)在前列腺癌诊断中的价值,其中纳入研究的DCE技术实施和影像医师经验等有差异,但总体结果未发现DCE对前列腺穿刺有临床意义[15,16]。因没有I级证据的支持,PI-RADS v2.1版依旧还是将DCE纳入进了其评价系统。PROMIS研究结果的出炉有可能会影响之后PI-RADS评分系统,在这个多中心的研究中,同样验证了DCE对初次穿刺诊断临床有意义前列腺癌没有帮助[17]。但目前还不能说DCE在前列腺癌无临床意义,其引起对肿瘤边界界定的准确性,可使肿瘤边界描绘更准确、肿瘤体积计算更精确、后续的靶向穿刺实施更精准[18]。基于此特性,DCE同样对局部治疗会起到一定的帮助[19]。在磁共振弥散加权成像(diffusion weighted imaging,DWI)序列提供较少信息的时候,如前列腺既往做过局部治疗、放射治疗或穿刺的患者,DCE还是对肿瘤的评估、诊断等有不小的价值[20,21,22]

2 MRI靶向前列腺穿刺活检
2.1 MRI靶向前列腺穿刺活检方法

MRI靶向前列腺穿刺活检主要有3种方法:MRI直接引导下穿刺(MRI-TB)、软件为基础的MR-TRUS融合靶向穿刺(FUS-TB)和认知融合靶向穿刺(COG-TB)。MRI直接引导下穿刺在分析mpMRI数据后可锁定可疑区域,然后T2WI相监视下靶向穿刺可疑区域,患者需俯卧位、经直肠操作,每个可疑区域穿刺均需重新扫描定位。此方法穿刺定位精确,但操作耗时,需要特殊核磁设备,可及性差且费用高[23]。软件为基础的MR-TRUS融合靶向穿刺也是在分析mpMRI数据后锁定可疑区域,再将mpMRI数据导入融合软件,TRUS下选取前列腺的一点和一面,将MRI和TRUS下前列腺腺体图像融合,在TRUS监视下靶向穿刺可疑区域。患者可截石位或俯卧位,经直肠或经会阴操作。TRUS压迫下的前列腺和MRI下的前列腺形态有或多或少的变化,但总体定位比较精确,软件下图像融合操作耗时,需要融合设备、穿刺支架,可及性比较高、费用尚可,与认知融合靶向和系统穿刺相比也比较耗时[23,24]。COG-TB同样是在分析mpMRI数据后锁定可疑区域,并将可疑区域在头脑中形成印象,然后在TRUS下锚定可疑区域穿刺,此法操作简单、快速、成本低,但精确度偏低,对操作者的经验要求较高,主观性较强[24,25]

目前,MRI-TB与其他两种靶向穿刺方法直接比较结果的证据不多,FUTURE研究共纳入234例PI-RADS≥3的患者随机接受3种方式靶向穿刺,结果发现穿刺方法对临床有意义前列腺癌的诊出率差异无统计学意义(FUS-TB为49%,COG-TB为44%,MRI-TB为55%,P=0.4)[26]。FUS-TB和COG-TB比较的研究多一些,也未发现临床有统计学意义前列腺癌的检出率差异[27,28]。但MRI-TB和FUS-TB对小病灶的诊出率要高一些,且可以提供更多的组织学信息[26,28]。除穿刺方法外,靶向穿刺的针数对检出的阳性率也有较大影响,在不少的中心,可疑病灶穿刺针数一般为2~3针,Lu等[29]在12针系统穿刺+5针靶点穿刺确诊的临床有意义前列腺癌的病灶中,发现2针可疑病灶穿刺可诊断其中77%的3+4及以上和72%的4+3及以上的病灶,会遗漏约25%的可疑病灶。

2.2 靶向穿刺是否可以取代系统穿刺的标准地位

为避免过度的非临床有意义前列腺癌的诊出率,系统穿刺的地位近年来受到越来越多的质疑。多数比较靶向穿刺和系统穿刺的随机对照试验得到了支持靶向穿刺的结果。

2.2.1 靶向穿刺在初次穿刺中的作用

经直肠或经会阴的12针系统前列腺穿刺仍是前列腺标准的穿刺方案,但近年来伴随着mpMRI的发展和MRI评分系统的不断完善,通过mpMRI定位可疑病灶进行靶向穿刺的结果对系统穿刺提出了挑战,结果发现系统穿刺会遗漏一些临床有意义前列腺癌的诊出,还会诊出一些临床无意义前列腺癌,过度发现也会增加过度治疗的可能[11]。在单中心研究中发现,单纯MRI靶向穿刺对临床有意义前列腺癌的诊出率与标准的系统穿刺不分伯仲[30,31,32],而且还可减少无临床意义前列腺癌的检出率[32]。为了进一步验证靶向穿刺的非劣性,PRECISION研究组设计了多中心的随机对照研究[1],入组患者为未接受过穿刺的患者,随机对其分组,对试验组患者进行mpMRI检查,对有可疑病灶的前列腺行COG-TB或FUS-TB,无可疑病灶的前列腺不行穿刺,对照组患者则行10-12针系统穿刺。结果发现靶向穿刺可增加12%的临床有意义前列腺癌检出率(38% vs 26%),并可减少13%的临床无意义前列腺癌的检出率(9% vs 22%),并且可使28%的患者免于穿刺(因试验组中71/252患者MRI不可见病灶)[1]

那么,现在是否可以跟系统穿刺说再见呢[33,34]?Arsov等[35]组织了一项随机对照研究,纳入初次穿刺阴性的患者,随机分组进行MRI-TB或系统穿刺+FUS-TB,结果显示联合系统穿刺组并未发现更多的临床有意义前列腺癌的检出率(32% vs 29%,P=0.7)。然而,此研究的结论并不十分可靠,其一,此研究以所有前列腺癌检出为主要研究重点,这使得在分析临床有意义前列腺癌结论的时候难免有偏倚;再次,系统穿刺+FUS-TB组共检出临床有意义前列腺癌约32%,如果只计算FUS-TB检出临床有意义前列腺癌的比例不足26%,也就是说仅18%(6/33)的患者只通过系统穿刺检出,从这个研究至少说明摒弃系统穿刺还为时过早[36]。为了验证这个问题,Ahdoot等[37]又组织开展了Trio的研究,该研究纳入有mpMRI可见病灶的患者,所有患者均接受靶向和系统穿刺,结果显示联合穿刺比两者之一方式穿刺多检出9.9%的前列腺癌,且使21.8%的患者ISUP分级升高,与单一靶向穿刺比较,可以多检出8.8%的临床有意义前列腺癌;此外对于接受根治手术的患者,联合穿刺能提供更为准确的组织病理学信息,从而为治疗方案的制定提供更为准确的肿瘤分期和分级[37]

2.2.2 靶向穿刺在二次穿刺中的作用

靶向穿刺最早在二次穿刺中应用,这部分患者初次甚至是二次穿刺阴性,但PSA持续不降,而且在mpMRI下可见较明确的可疑病灶。在回顾性的研究中发现靶向穿刺在二次穿刺活检中既可减少无效穿刺,又可提高穿刺的前列腺癌检出率[32]。但在随机对照研究中,与系统穿刺比较,COG-TB并未增加前列腺癌的检出率[38]。该研究的病例采集于mpMRI开始的早期,影像医师和行穿刺的泌尿科医师初期经验不足可能会造成COG-TB组检出率偏低。在MRI-FIRST研究中,共纳入了275初次穿刺阴性的患者,在二次穿刺中单用MRI靶向的前列腺穿刺将遗漏其中14%的临床显著前列腺癌,单用系统穿刺诊断将遗漏其中20%的临床显著前列腺癌,二者的差异仍无统计学意义;但MRI靶向的前列腺穿刺可减少一些无用穿刺和临床无意义前列腺癌的检出率。无疑,两种方式联合的穿刺方法能尽可能避免临床前列腺癌在二次穿刺中的漏诊[39,40,41]。此研究至少也说明摒弃系统穿刺对二次穿刺的患者仍为时过早。

3 展望

MRI靶向前列腺穿刺对临床有意义前列腺癌的诊断率高,诊断随着mpMRI和经直肠超声(TRUS)的不断发展,MRI靶向前列腺穿刺在临床应用日趋广泛,但仍不能抛弃系统前列腺穿刺;此外,靶向穿刺操作规范仍需进一步完善,如单个可疑病灶的穿刺针数等。靶向联合系统穿刺是未来发展的必然趋势。

利益冲突
利益冲突

所有作者均声明不存在利益冲突

参考文献
[1]
KasivisvanathanV, RannikkoAS, BorghiM, et al. MRI-targeted or standard biopsy for prostate-cancer diagnosis[J]. N Engl J Med, 2018, 378(19): 1767-1777. DOI: 10.1056/NEJMoa1801993.
[2]
SonnGA, ChangE, NatarajanS, et al. Value of targeted prostate biopsy using magnetic resonance-ultrasound fusion in men with prior negative biopsy and elevated prostate-specific antigen[J]. Eur Urol, 2014, 65(4): 809-815. DOI: 10.1016/j.eururo.2013.03.025.
[3]
ValerioM, DonaldsonI, EmbertonM, et al. Detection of clinically significant prostate cancer using magnetic resonance imaging-ultrasound fusion targeted biopsy: a systematic review[J]. Eur Urol, 2015, 68(1): 8-19. DOI: 10.1016/j.eururo.2014.10.026.
[4]
TonttilaPP, LanttoJ, P??kk?E, et al. Prebiopsy multiparametric magnetic resonance imaging for prostate cancer diagnosis in biopsy-naive men with suspected prostate cancer based on elevated prostate-specific antigen values: results from a randomized prospective blinded controlled trial[J]. Eur Urol, 2016, 69(3): 419-425. DOI: 10.1016/j.eururo.2015.05.024.
[5]
WiseJ. Nice recommends MRI for suspected prostate cancer to reduce biopsies[J]. BMJ, 2018, 363: k5290. DOI: 10.1136/bmj.k5290.
[6]
TurkbeyB, RosenkrantzAB, HaiderMA, et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2[J]. Eur Urol, 2019, 76(3): 340-351. DOI: 10.1016/j.eururo.2019.02.033.
[7]
KanekoM, SuganoD, LebastchiAH, et al. Techniques and outcomes of MRI-TRUS fusion prostate biopsy[J]. Curr Urol Rep, 2021, 22(4): 27. DOI: 10.1007/s11934-021-01037-x.
[8]
DengYS, HeYH, YingWW, et al. Value of three biopsy methods in prostate cancer detection: a meta-analysis and systematic review[J]. Eur Rev Med Pharmacol Sci, 2021, 25(5): 2221-2234. DOI: 10.26355/eurrev_202103_25254.
[9]
PrinceM, FosterBR, KaempfA, et al. In-bore versus fusion MRI-targeted prostate biopsy of PI-RADS category 4 or 5 lesions: a retrospective comparative analysis using propensity score weighting[J/OL]. AJR Am J Roentgenol, 2021: 25207. (2021-03-01). https://pubmed.ncbi.nlm.nih.gov/33646819/. DOI: 10.2214/AJR.20.25207.
[10]
NawfalG, SarkisJ, AssafS, et al. Multiparametric MRI with in-bore targeted biopsy in the diagnostic pathway of prostate cancer: Data from a single institution experience[J/OL]. Urol Oncol, 2021: S1078-1439(21)00052-1. (2021-03-03). https://pubmed.ncbi.nlm.nih.gov/33676850/. DOI: 10.1016/j.urolonc.2021.01.026.
[11]
AhmedHU, El-Shater BosailyA, BrownLC, et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study[J]. Lancet, 2017, 389(10071): 815-822. DOI: 10.1016/S0140-6736(16)32401-1.
[12]
FüttererJJ, BrigantiA, De VisschereP, et al. Can clinically significant prostate cancer be detected with multiparametric magnetic resonance imaging? A systematic review of the literature[J]. Eur Urol, 2015, 68(6): 1045-1053. DOI: 10.1016/j.eururo.2015.01.013.
[13]
SathianathenNJ, OmerA, HarrissE, et al. Negative predictive value of multiparametric magnetic resonance imaging in the detection of clinically significant prostate cancer in the prostate imaging reporting and data system era: a systematic review and meta-analysis[J]. Eur Urol, 2020, 78(3): 402-414. DOI: 10.1016/j.eururo.2020.03.048.
[14]
JohnsonDC, RamanSS, MirakSA, et al. Detection of individual prostate cancer Foci via multiparametric magnetic resonance imaging[J]. Eur Urol, 2019, 75(5): 712-720. DOI: 10.1016/j.eururo.2018.11.031.
[15]
WooS, SuhCH, KimSY, et al. Head-to-head comparison between biparametric and multiparametric MRI for the diagnosis of prostate cancer: a systematic review and meta-analysis[J]. AJR Am J Roentgenol, 2018, 211(5): W226-W241. DOI: 10.2214/AJR.18.19880.
[16]
BassEJ, PantovicA, ConnorM, et al. A systematic review and meta-analysis of the diagnostic accuracy of biparametric prostate MRI for prostate cancer in men at risk[J/OL]. Prostate Cancer Prostatic Dis, 2020. (2020-11-20). https://pubmed.ncbi.nlm.nih.gov/33219368/. DOI: 10.1038/s41391-020-00298-w.
[17]
El-Shater BosailyA, FrangouE, AhmedHU, et al. Additional value of dynamic contrast-enhanced sequences in multiparametric prostate magnetic resonance imaging: data from the PROMIS study[J]. Eur Urol, 2020, 78(4): 503-511. DOI: 10.1016/j.eururo.2020.03.002.
[18]
SunCP, ChatterjeeA, YousufA, et al. Comparison of T2-weighted imaging, DWI, and dynamic contrast-enhanced MRI for calculation of prostate cancer index lesion volume: correlation with whole-mount pathology[J]. AJR Am J Roentgenol, 2019, 212(2): 351-356. DOI: 10.2214/AJR.18.20147.
[19]
CornudF, KhouryG, BouazzaN, et al. Tumor target volume for focal therapy of prostate cancer-does multiparametric magnetic resonance imaging allow for a reliable estimation?[J]. J Urol, 2014, 191(5): 1272-1279. DOI: 10.1016/j.juro.2013.12.006.
[20]
MasonJ, AdiotomreE, BownesP, et al. Importance of dynamic contrast enhanced magnetic resonance imaging for targeting biopsy and salvage treatments after prostate cancer recurrence[J]. J Contemp Brachytherapy, 2018, 10(6): 570-572. DOI: 10.5114/jcb.2018.79667.
[21]
LotteR, LafourcadeA, MozerP, et al. Multiparametric MRI for suspected recurrent prostate cancer after HIFU: is DCE still needed?[J]. Eur Radiol, 2018, 28(9): 3760-3769. DOI: 10.1007/s00330-018-5352-z.
[22]
LuzurierA, De GuibertPHJ, AlleraA, et al. Dynamic contrast-enhanced imaging in localizing local recurrence of prostate cancer after radiotherapy: limited added value for readers of varying level of experience[J]. J Magn Reson Imaging, 2018, 48(4): 1012-1023. DOI: 10.1002/jmri.25991.
[23]
VenderinkW, GoversTM, de RooijM. Cost-effectiveness comparison of imaging-guided prostate biopsy techniques: systematic transrectal ultrasound, direct in-bore MRI, and image fusion[J]. AJR Am J Roentgenol, 2017, 208(5): 1058-1063. DOI: 10.2214/AJR.16.17322.
[24]
VenderinkW, BomersJG, OverduinCG, et al. Multiparametric magnetic resonance imaging for the detection of clinically significant prostate cancer: what urologists need to know. Part 3: targeted biopsy[J]. Eur Urol, 2020, 77(4): 481-490. DOI: 10.1016/j.eururo.2019.10.009.
[25]
MarraG, PloussardG, FuttererJ, et al. Controversies in MR targeted biopsy: alone or combined, cognitive versus software-based fusion, transrectal versus transperineal approach?[J]. World J Urol, 2019, 37(2): 277-287. DOI: 10.1007/s00345-018-02622-5.
[26]
WegelinO, ExterkateL, Van Der LeestM, et al. The FUTURE trial: a multicenter randomised controlled trial on target biopsy techniques based on magnetic resonance imaging in the diagnosis of prostate cancer in patients with prior negative biopsies[J]. Eur Urol, 2019, 75(4): 582-590. DOI: 10.1016/j.eururo.2018.11.040.
[27]
ValerioM, McCartanN, FreemanA, et al. Visually directed vs. software-based targeted biopsy compared to transperineal template mapping biopsy in the detection of clinically significant prostate cancer[J]. Urol Oncol, 2015, 33(10): 424.e9-424.e16. DOI: 10.1016/j.urolonc.2015.06.012.
[28]
WysockJS, RosenkrantzAB, HuangWC, et al. A prospective, blinded comparison of magnetic resonance (MR) imaging-ultrasound fusion and visual estimation in the performance of MR-targeted prostate biopsy: the PROFUS trial[J]. Eur Urol, 2014, 66(2): 343-351. DOI: 10.1016/j.eururo.2013.10.048.
[29]
LuAJ, SyedJS, GhabiliK, et al. Role of core number and location in targeted magnetic resonance Imaging-Ultrasound fusion prostate biopsy[J]. Eur Urol, 2019, 76(1): 14-17. DOI: 10.1016/j.eururo.2019.04.008.
[30]
BacoE, RudE, EriLM, et al. A randomized controlled trial to assess and compare the outcomes of two-core prostate biopsy guided by fused magnetic resonance and transrectal ultrasound images and traditional 12-core systematic biopsy[J]. Eur Urol, 2016, 69(1): 149-156. DOI: 10.1016/j.eururo.2015.03.041.
[31]
SiddiquiMM, Rais-BahramiS, TurkbeyB, et al. Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer[J]. JAMA, 2015, 313(4): 390-397. DOI: 10.1001/jama.2014.17942.
[32]
KasivisvanathanV, StabileA, NevesJB, et al. Magnetic resonance imaging-targeted biopsy versus systematic biopsy in the detection of prostate cancer: a systematic review and meta-analysis[J]. Eur Urol, 2019, 76(3): 284-303. DOI: 10.1016/j.eururo.2019.04.043.
[33]
PokornyMR, ThompsonLC. Is magnetic resonance imaging-targeted biopsy now the standard of care?[J]. Eur Urol, 2019, 76(3): 304-305. DOI: 10.1016/j.eururo.2019.06.002.
[34]
Febres-AldanaCA, AlghamdiS, WeppelmannTA, et al. Magnetic resonance imaging-ultrasound fusion-targeted biopsy combined with systematic 12-core ultrasound-guided biopsy improves the detection of clinically significant prostate cancer: are we ready to abandon the systematic approach?[J]. Urol Ann, 2020, 12(4): 366-372. DOI: 10.4103/UA.UA_123_19.
[35]
ArsovC, RabenaltR, BlondinD, et al. Prospective randomized trial comparing magnetic resonance imaging (MRI)-guided in-bore biopsy to MRI-ultrasound fusion and transrectal ultrasound-guided prostate biopsy in patients with prior negative biopsies[J]. Eur Urol, 2015, 68(4): 713-720. DOI: 10.1016/j.eururo.2015.06.008.
[36]
SchootsIG. Omission of systematic transrectal ultrasound guided biopsy from the MRI targeted approach in men with previous negative prostate biopsy might still be premature[J]. Ann Transl Med, 2016, 4(10): 205. DOI: 10.21037/atm.2016.03.53.
[37]
AhdootM, WilburAR, ReeseSE, et al. MRI-targeted, systematic, and combined biopsy for prostate cancer diagnosis[J]. N Engl J Med, 2020, 382(10): 917-928. DOI: 10.1056/NEJMoa1910038.
[38]
TavernaG, BozziniG, GrizziF, et al. Endorectal multiparametric 3-tesla magnetic resonance imaging associated with systematic cognitive biopsies does not increase prostate cancer detection rate: a randomized prospective trial[J]. World J Urol, 2016, 34(6): 797-803. DOI: 10.1007/s00345-015-1711-4.
[39]
RouvièreO, PuechP, Renard-PennaR, et al. Use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsy-naive patients (MRI-FIRST): a prospective, multicentre, paired diagnostic study[J]. Lancet Oncol, 2019, 20(1): 100-109. DOI: 10.1016/S1470-2045(18)30569-2.
[40]
CarlssonSV, EasthamJA. Re: use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsy-naive patients (MRI-first): a prospective, multicentre, paired diagnostic study[J]. Eur Urol, 2019, 76(4): 534-535. DOI: 10.1016/j.eururo.2019.04.022.
[41]
TanejaSS. Re: use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsy-naive patients (MRI-first): a prospective, multicentre, paired diagnostic study[J]. J Urol, 2019, 202(1): 34-35. DOI: 10.1097/01.JU.0000557757.85458.f2.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词