参考文献[1]
Román-MaloL, BullonP. Influence of the periodontal disease, the most prevalent inflammatory event, in peroxisome proliferator-activated receptors linking nutrition and energy metabolism[J]. Int J Mol Sci, 2017, 18(7): 1438. .
[2]
SlotsJ. Periodontitis: facts, fallacies and the future[J]. Periodontol 2000, 2017, 75(1): 7-23. .
[3]
Muñoz AguileraE, SuvanJ, ButiJ, et al. Periodontitis is associated with hypertension: a systematic review and meta-analysis[J]. Cardiovasc Res, 2020, 116(1):28-39. .
[4]
PreshawPM, AlbaAL, HerreraD, et al. Periodontitis and diabetes: a two-way relationship[J]. Diabetologia, 2012, 55(1): 21-31. .
[5]
HussainSB, BotelhoJ, MachadoV, et al. Is there a bidirectional association between rheumatoid arthritis and periodontitis? A systematic review and meta-analysis[J]. Semin Arthritis Rheum, 2020, 50(3): 414-422. .
[6]
XieJ, GorléN, VandendriesscheC, et al. Low-grade peripheral inflammation affects brain pathology in the AppNL-G-Fmouse model of Alzheimer′s disease[J]. Acta Neuropathol Commun, 2021, 9(1): 163. .
[7]
HashiokaS, InoueK, HayashidaM, et al. Implications of systemic inflammation and periodontitis for major depression[J]. Front Neurosci, 2018, 12: 483. .
[8]
SinghraoSK, OlsenI. Assessing the role of Porphyromonas gingivalis in periodontitis to determine a causative relationship with Alzheimer′s disease[J]. J Oral Microbiol, 2019, 11(1): 1563405. .
[9]
HussainR, ZubairH, PursellS, et al. Neurodegenerative diseases: regenerative mechanisms and novel therapeutic approaches[J]. Brain Sci, 2018, 8(9): 177. .
[10]
SuL, FaluyiYO, HongYT, et al. Neuroinflammatory and morphological changes in late-life depression: the NIMROD study[J]. Br J Psychiatry, 2016, 209(6): 525-526. .
[11]
FeiginVL, VosT, NicholsE, et al. The global burden of neurological disorders: translating evidence into policy[J]. Lancet Neurol, 2020, 19(3): 255-265. .
[12]
BorsaL, DuboisM, SaccoG, et al. Analysis the link between periodontal diseases and alzheimer′s disease: a systematic review[J]. Int J Environ Res Public Health, 2021, 18(17): 9312. .
[13]
DominySS, LynchC, ErminiF, et al. Porphyromonas gingivalis in Alzheimer′s disease brains: evidence for disease causation and treatment with small-molecule inhibitors[J]. Sci Adv, 2019, 5(1): eaau3333. .
[14]
ChenCK, WuYT, ChangYC. Association between chronic periodontitis and the risk of Alzheimer′s disease: a retrospective, population-based, matched-cohort study[J]. Alzheimers Res Ther, 2017, 9(1): 56. .
[15]
HolmerJ, EriksdotterM, SchultzbergM, et al. Association between periodontitis and risk of Alzheimer′s disease, mild cognitive impairment and subjective cognitive decline: a case-control study[J]. J Clin Periodontol, 2018, 45(11): 1287-1298. .
[16]
TsuneishiM, YamamotoT, YamaguchiT, et al. Association between number of teeth and Alzheimer′s disease using the National Database of Health Insurance Claims and Specific Health Checkups of Japan[J]. PLoS One, 2021, 16(4): e0251056. .
[17]
HateganSI, KamerSA, CraigRG, et al. Cognitive dysfunction in young subjects with periodontal disease[J]. Neurol Sci, 2021, 42(11): 4511-4519. .
[18]
MiklossyJ, McGeerPL. Common mechanisms involved in Alzheimer′s disease and type 2 diabetes: a key role of chronic bacterial infection and inflammation[J]. Aging (Albany NY), 2016, 8(4): 575-588. .
[19]
CestariJA, FabriGM, KalilJ, et al. Oral infections and cytokine levels in patients with alzheimer′s disease and mild cognitive impairment compared with controls[J]. J Alzheimers Dis, 2016, 52(4): 1479-1485. .
[20]
JinJ, GuangM, OgbuehiAC, et al. Shared molecular mechanisms between Alzheimer′s disease and periodontitis revealed by transcriptomic analysis[J]. Biomed Res Int, 2021, 2021: 6633563. .
[21]
HuY, LiH, ZhangJ, et al. Periodontitis induced by P. gingivalis-LPS is associated with neuroinflammation and learning and memory impairment in Sprague-Dawley rats[J]. Front Neurosci, 2020, 14: 658. .
[22]
ZhangJ, YuC, ZhangX, et al. Porphyromonas gingivalis lipopolysaccharide induces cognitive dysfunction, mediated by neuronal inflammation via activation of the TLR4 signaling pathway in C57BL/6 mice[J]. J Neuroinflammation, 2018, 15(1): 37. .
[23]
DingY, RenJ, YuH, et al. Porphyromonas gingivalis, a periodontitis causing bacterium, induces memory impairment and age-dependent neuroinflammation in mice[J]. Immun Ageing, 2018, 15: 6. .
[24]
IlievskiV, ZuchowskaPK, GreenSJ, et al. Chronic oral application of a periodontal pathogen results in brain inflammation, neurodegeneration and amyloid beta production in wild type mice[J]. PLoS One, 2018, 13(10): e0204941. .
[25]
WuZ, NiJ, LiuY, et al. Cathepsin B plays a critical role in inducing Alzheimer′s disease-like phenotypes following chronic systemic exposure to lipopolysaccharide from Porphyromonas gingivalis in mice[J]. Brain Behav Immun, 2017, 65: 350-361. .
[26]
QiuC, YuanZ, HeZ, et al. Lipopolysaccharide preparation derived from porphyromonas gingivalis induces a weaker immuno-inflammatory response in BV-2 microglial cells than Escherichia coli by differentially activating TLR2/4-mediated NF-κB/STAT3 signaling pathways[J]. Front Cell Infect Microbiol, 2021, 11: 606986. .
[27]
GordonR, AlbornozEA, ChristieDC, et al. Inflammasome inhibition prevents α-synuclein pathology and dopaminergic neurodegeneration in mice[J]. Sci Transl Med, 2018, 10(465): eaah4066. .
[28]
BotelhoJ, LyraP, ProençaL, et al. Relationship between blood and standard biochemistry levels with periodontitis in parkinson′s disease patients: data from the NHANES 2011-2012[J]. J Pers Med, 2020, 10(3): 69. .
[29]
PoeweW, SeppiK, TannerCM, et al. Parkinson disease[J]. Nat Rev Dis Primers, 2017, 3: 17013. .
[30]
AdamsB, NunesJM, PageMJ, et al. Parkinson′s disease: a systemic inflammatory disease accompanied by bacterial inflammagens[J]. Front Aging Neurosci, 2019, 11: 210. .
[31]
OlsenI, KellDB, PretoriusE. Is Porphyromonas gingivalis involved in Parkinson′s disease?[J]. Eur J Clin Microbiol Infect Dis, 2020, 39(11): 2013-2018. .
[32]
ChenCK, WuYT, ChangYC. Periodontal inflammatory disease is associated with the risk of Parkinson′s disease: a population-based retrospective matched-cohort study[J]. PeerJ, 2017, 5: e3647. .
[33]
ChenCK, HuangJY, WuYT, et al. Dental scaling decreases the risk of Parkinson′s disease: a nationwide population-based nested case-control study[J]. Int J Environ Res Public Health, 2018, 15(8): 1587. .
[34]
FengYK, WuQL, PengYW, et al. Oral P. gingivalis impairs gut permeability and mediates immune responses associated with neurodegeneration in LRRK2 R1441G mice[J]. J Neuroinflammation, 2020, 17(1): 347. .
[35]
ReichDS, LucchinettiCF, CalabresiPA. Multiple sclerosis[J]. N Engl J Med, 2018, 378(2): 169-180. .
[36]
BrowneP, ChandraratnaD, AngoodC, et al. Atlas of multiple sclerosis 2013: a growing global problem with widespread inequity[J]. Neurology, 2014, 83(11): 1022-1024. .
[37]
CompstonA, ColesA. Multiple sclerosis[J]. Lancet, 2008, 372(9648): 1502-1517. .
[38]
HemmerB, KerschensteinerM, KornT. Role of the innate and adaptive immune responses in the course of multiple sclerosis[J]. Lancet Neurol, 2015, 14(4): 406-419. .
[39]
BecherB, SpathS, GovermanJ. Cytokine networks in neuroinflammation[J]. Nat Rev Immunol, 2017, 17(1): 49-59. .
[40]
van LangelaarJ, van der Vuurst de VriesRM, JanssenM, et al. T helper 17.1 cells associate with multiple sclerosis disease activity: perspectives for early intervention[J]. Brain, 2018, 141(5): 1334-1349. .
[41]
McGinleyAM, SuttonCE, EdwardsSC, et al. Interleukin-17A serves a priming role in autoimmunity by recruiting IL-1β-producing myeloid cells that promote pathogenic T cells[J]. Immunity, 2020, 52(2): 342-356.e6. .
[42]
HavrdováE, BelovaA, GoloborodkoA, et al. Activity of secukinumab, an anti-IL-17A antibody, on brain lesions in RRMS: results from a randomized, proof-of-concept study[J]. J Neurol, 2016, 263(7): 1287-1295. .
[43]
MoutsopoulosNM, KlingHM, AngelovN, et al. Porphyromonas gingivalis promotes Th17 inducing pathways in chronic periodontitis[J]. J Autoimmun, 2012, 39(4): 294-303. .
[44]
DutzanN, KajikawaT, AbuslemeL, et al. A dysbiotic microbiome triggers TH17 cells to mediate oral mucosal immunopathology in mice and humans[J]. Sci Transl Med, 2018, 10(463): eaat0797. .
[45]
AdibradM, DeyhimiP, Ganjalikhani HakemiM, et al. Signs of the presence of Th17 cells in chronic periodontal disease[J]. J Periodontal Res, 2012, 47(4): 525-531. .
[46]
OhyamaH, Kato-KogoeN, KuharaA, et al. The involvement of IL-23 and the Th17 pathway in periodontitis[J]. J Dent Res, 2009, 88(7): 633-638. .
[47]
AyZY, YılmazG, OzdemM, et al. The gingival crevicular fluid levels of interleukin-11 and interleukin-17 in patients with aggressive periodontitis[J]. J Periodontol, 2012, 83(11): 1425-1431. .
[48]
SchenkeinHA, KoertgeTE, BrooksCN, et al. IL-17 in sera from patients with aggressive periodontitis[J]. J Dent Res, 2010, 89(9): 943-947. .
[49]
WangH, LuoZ, LeiL, et al. Interaction between oral lichen planus and chronic periodontitis with Th17-associated cytokines in serum[J]. Inflammation, 2013, 36(3): 696-704. .
[50]
MonteiroAC, ScovinoA, RaposoS, et al. Kinin danger signals proteolytically released by gingipain induce Fimbriae-specific IFN-gamma-and IL-17-producing T cells in mice infected intramucosally with Porphyromonas gingivalis[J]. J Immunol, 2009, 183(6): 3700-3711. .
[51]
WongDM, TamV, LamR, et al. Protease-activated receptor 2 has pivotal roles in cellular mechanisms involved in experimental periodontitis[J]. Infect Immun, 2010, 78(2): 629-638. .
[52]
GaddisDE, MichalekSM, KatzJ. TLR4 signaling via MyD88 and TRIF differentially shape the CD4+T cell response to Porphyromonas gingivalis hemagglutinin B[J]. J Immunol, 2011, 186(10): 5772-5783. .
[53]
SheuJJ, LinHC. Association between multiple sclerosis and chronic periodontitis: a population-based pilot study[J]. Eur J Neurol, 2013, 20(7): 1053-1059. .
[54]
PolakD, ShmueliA, BrennerT, et al. Oral infection with P. gingivalis exacerbates autoimmune encephalomyelitis[J]. J Periodontol, 2018, 89(12): 1461-1466. .
[55]
ShapiraL, AyalonS, BrennerT. Effects of Porphyromonas gingivalis on the central nervous system: activation of glial cells and exacerbation of experimental autoimmune encephalomyelitis[J]. J Periodontol, 2002, 73(5): 511-516. .
[56]
CademartoriMG, GastalMT, NascimentoGG, et al. Is depression associated with oral health outcomes in adults and elders? A systematic review and meta-analysis[J]. Clin Oral Investig, 2018, 22(8): 2685-2702. .
[57]
AraújoMM, MartinsCC, CostaLC, et al. Association between depression and periodontitis: a systematic review and meta-analysis[J]. J Clin Periodontol, 2016, 43(3): 216-228. .
[58]
ZhengDX, KangXN, WangYX, et al. Periodontal disease and emotional disorders: a meta-analysis[J]. J Clin Periodontol, 2021, 48(2): 180-204. .
[59]
LaforgiaA, CorsaliniM, StefanachiG, et al. Assessment of psychopatologic traits in a group of patients with adult chronic periodontitis: study on 108 cases and analysis of compliance during and after periodontal treatment[J]. Int J Med Sci, 2015, 12(10): 832-839. .
[60]
DumitrescuAL. Depression and inflammatory periodontal disease considerations-an interdisciplinary approach[J]. Front Psychol, 2016, 7: 347. .
[61]
SaintrainMV, de SouzaEH. Impact of tooth loss on the quality of life[J]. Gerodontology, 2012, 29(2): e632-636. .
[62]
HsuCC, HsuYC, ChenHJ, et al. Association of periodontitis and subsequent depression: a nationwide population-based study[J]. Medicine (Baltimore), 2015, 94(51): e2347. .
[63]
JelavićS, BajićŽ, FilipčićIŠ, et al. Periodontal status and the efficacy of the first-line treatment of major depressive disorder[J]. Clin Exp Dent Res, 2022, 8(1): 366-373. .
[64]
SunC, HanJ, BaiY, et al. Neuropeptides as the shared genetic crosstalks linking periodontitis and major depression disorder[J]. Dis Markers, 2021, 2021: 3683189. .
[65]
MaesM, GaleckiP, ChangYS, et al. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2011, 35(3): 676-692. .
[66]
MartínezM, Martín-HernándezD, VirtoL, et al. Periodontal diseases and depression: a pre-clinical in vivo study[J]. J Clin Periodontol, 2021, 48(4): 503-527. .
[67]
WangYX, KangXN, CaoY, et al. Porphyromonas gingivalis induces depression via downregulating p75NTR-mediated BDNF maturation in astrocytes[J]. Brain Behav Immun, 2019, 81: 523-534. .
[68]
D′MelloC, SwainMG. Immune-to-brain communication pathways in inflammation-associated sickness and depression[J]. Curr Top Behav Neurosci, 2017, 31: 73-94. .
[69]
FristerA, SchmidtC, SchnebleN, et al. Phosphoinositide 3-kinase γ affects LPS-induced disturbance of blood-brain barrier via lipid kinase-independent control of cAMP in microglial cells[J]. Neuromolecular Med, 2014, 16(4): 704-713. .
[70]
CarterCJ. Alzheimer′s disease plaques and tangles: cemeteries of a pyrrhic victory of the immune defence network against herpes simplex infection at the expense of complement and inflammation-mediated neuronal destruction[J]. Neurochem Int, 2011, 58(3): 301-320. .