综述
牙周病与神经系统疾病关系的研究进展
中华口腔医学杂志, 2022,57(5) : 529-534. DOI: 10.3760/cma.j.cn112144-20220312-00103
摘要

牙周病是由细菌引起的牙支持组织的疾病,可导致全身的慢性低度炎症。一旦全身慢性炎症持续存在,可能诱发神经炎症。神经炎症是多种神经系统疾病的重要特征,提示牙周病与神经系统疾病之间可能存在潜在联系。本文列举了牙周病诱发和加重神经系统疾病(包括阿尔茨海默病、帕金森病、多发性硬化以及重度抑郁症)的流行病学和生物学证据,分析牙周病诱导和加重神经系统疾病的可能机制。强调维护口腔健康、预防和治疗牙周病的重要性,并为牙周病与神经系统疾病关系的深入研究以及相关神经系统疾病的防治策略提供新思路。

引用本文: 白雪冰, 周陆军, 林文珍, 等.  牙周病与神经系统疾病关系的研究进展 [J] . 中华口腔医学杂志, 2022, 57(5) : 529-534. DOI: 10.3760/cma.j.cn112144-20220312-00103.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

版权归中华医学会所有。

未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。

牙周病是成年人中最常见的慢性炎症性疾病1,主要由牙周致病菌和宿主的免疫反应引起2。牙周致病菌及其代谢产物可通过促进宿主产生促炎因子、入侵循环系统,引起全身低度炎症,进而与一些慢性系统性疾病(心血管疾病、糖尿病、类风湿关节炎等)息息相关3, 4, 5。近年越来越多的研究表明,牙周病引起的全身低度炎症可通过破坏血脑屏障通透性、激活小胶质细胞、趋化白细胞入脑等途径诱发神经炎症6, 7, 8

神经炎症的概念最初是针对神经退行性疾病提出的。神经退行性疾病是以神经元结构和功能逐渐丧失为特征的神经系统疾病,包括阿尔茨海默病(Alzheimer's disease,AD)、帕金森病(Parkinson's disease)、多发性硬化(multiple sclerosis,MS)等。在这些疾病中,小胶质细胞被激活并分泌炎症递质破坏中枢神经系统(central nervous system,CNS),导致感觉、运动和认知功能逐渐衰退,甚至完全丧失9。研究发现神经炎症在其他神经系统疾病,例如重度抑郁症(major depressive disorder,MDD)中也存在10。神经系统疾病影响着全球10亿人口,其死亡率占全球死亡人数的12%11,给家庭和社会造成沉重的负担。因绝大多数神经系统疾病尚不能被完全治愈,故针对此类疾病的预防和治疗尤为重要。本文将回顾牙周病与神经系统疾病的潜在联系,并分析牙周病诱发和加重神经系统疾病的机制,强调维护口腔健康的重要性,为神经系统疾病的防治策略提供新思路。

一、AD

AD是最常见的神经系统疾病,以进行性认知功能障碍为主要临床症状12。AD的发病机制尚不清楚,可能与脑内β淀粉样蛋白肽的过度生产和积累以及tau蛋白的过度磷酸化有关13

大量的临床数据表明慢性牙周炎可增加罹患AD的风险14。广泛性的牙槽骨吸收、深牙周袋数量增加以及缺牙数增多均与AD的早期认知障碍相关15, 16。在青少年中,患有侵袭性牙周炎的人群延时回忆和即时回忆测试以及学习曲线的表现均显著低于健康对照组,表明侵袭性牙周炎可造成患者的认知障碍17。其中,细菌可能是牙周病作用于AD的关键因素。在死亡的AD患者脑组织中发现的口腔细菌密度比对照组高7倍18。特别是牙周病的主要致病菌——牙龈卟啉单胞菌(Porphyromonas gingivalis,Pg)的DNA在AD患者脑脊液中被识别,且其主要毒力因子牙龈蛋白酶被证实与tau蛋白和泛素化有关13。此外,AD患者血清中白细胞介素(interleukin,IL)-6和肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)的升高与牙周病密切相关19。Jin等20利用现有的牙周病和AD转录组数据库进行生物信息学分析,在分子水平上揭示了牙周病与AD之间的联系。

越来越多的动物研究也证明了牙周病与AD之间的联系。由Pg-脂多糖(lipopolysaccharide,LPS)(Pg-LPS)诱导的牙周病大鼠和小鼠表现出学习和记忆能力显著下降、脑内淀粉样前体蛋白(amyloid precursor protein,APP)表达量上调和β-淀粉样蛋白沉积21, 22, 23, 24, 25。Zhang等22对小鼠进行腹腔注射和龈沟注射Pg-LPS,发现Toll样受体4(Toll-like receptor-4,TLR4)/核因子-κB(nuclear factor-κB,NF-κB)通路被激活,炎症因子的表达上调,进而诱导小鼠神经炎症,造成认知障碍,且上述变化可被TLR4特异性抑制剂阻止,提示外周炎症可通过TLR4/NF-κB通路影响认知功能。此外,Zhang等22还研究了Pg-LPS对小胶质细胞的影响,发现Pg-LPS可以激活BV-2小胶质细胞的NF-κB/STAT3信号通路,增加NF-κB和STAT3蛋白的磷酸化状态,并诱导其核转位,从而上调IL-1β、IL-6、TNF-α、IL-17和 IL-23炎症因子的表达26。以上研究表明,牙周病及其致病菌可能通过循环系统和神经炎症增加AD的发病风险和影响AD的病程。

二、帕金森病

帕金森病是一种以黑质致密部多巴胺能神经元丢失伴随着慢性神经炎症、线粒体功能障碍以及α-突触核蛋白(α-synuclein)异常累积形成路易小体为特征的神经系统疾病27,其典型的运动症状有静止性震颤、肌强直和运动迟缓、姿势步态异常等躯体运动障碍,并伴随一系列非运动症状28。帕金森病作为仅次于AD的第二常见的慢性神经系统疾病,影响了全球2%的60岁以上人群29

在帕金森病患者的循环系统中,促炎因子水平显著升高,且存在血凝过快、血小板激活、血浆中淀粉样蛋白沉积的现象30。值得注意的是,Pg可通过分泌牙龈蛋白酶R1破坏患者凝血系统的稳态,并与LPS一起促进血凝块形成,这与帕金森病患者血液呈高凝状态的表现一致31。上述研究在理论上为牙周病及其致病菌可导致帕金森病的发生提供了可能。

多项流行病学研究推测牙周病是促进帕金森病发展的风险因素。一项基于人群的回顾性队列研究显示,与无牙周病的个体(n=10 792)相比,新诊断牙周病的个体(n=5 396)发生帕金森病的风险更高,且结果不受性别、年龄、合并症和城市化水平的影响32。另一项病例对照试验研究了牙周治疗对帕金森病发展的影响,在40~69岁无牙周病人群(n=5 552)中,连续5年进行牙周洁治的个体较不进行牙周洁治的个体患帕金森病的风险显著降低33。此外,在70岁以上的牙周病患者(n=3 377)中,不进行有规律的牙周洁治或从来不做牙周洁治是帕金森病发生的重要风险因素14

一项动物实验用Pg对帕金森小鼠进行灌胃,发现Pg可能通过损害肠道通透性、诱导外周炎症因子IL-17A分泌加重帕金森病的多巴胺能神经元丢失34。然而,牙周病促进帕金森病发展的具体机制还有待进一步探索。

三、MS

MS是CNS常见的慢性炎症性和自身免疫性疾病,典型的临床特征包括:视神经炎引起的视力下降、横贯性脊髓炎引起的肢体乏力或感觉异常、脑干功能障碍引起的复视以及小脑病变引起的共济失调。随着病程进展,可出现不可逆的行动障碍和认知缺陷35。在细胞分子层面,MS表现为CNS中神经纤维脱髓鞘,炎性细胞浸润等。MS患者在全球累及超过230万人36,也是中青年人非创伤性残疾的主要原因37

MS的发病机制尚不清楚,研究显示先天性和适应性免疫失调可能发挥了关键性作用38,外周侵入中枢的白细胞是CNS炎症递质的主要来源39。临床试验数据表明,MS患者的CNS 实质组织、脑脊液、血液中Th1/Th17 细胞数量增加39,且MS患者血清中Th17 相关细胞因子IL-17 和IL-23 水平也显著升高40。在MS的动物模型,即实验性自身免疫性脑脊髓炎模型(experimental autoimmune encephalomyelitis,EAE)中,IL-17A在小鼠发病前招募分泌IL-1β的髓系细胞进而活化产生具有致病性的γδT细胞和Th17细胞41。在药物开发中,IL-17A单克隆抗体药物Secukinumab能降低复发缓解型MS患者的MRI显示的活动性病变42。上述研究提示,Th17细胞的过度激活与MS的发病密切相关。

值得注意的是,来自牙周病原体的毒力因子可促进Th17细胞激活43,由Th17分泌的IL-17A是牙周炎病理过程的重要调节分子,其水平与牙周炎的严重程度呈正相关44。在牙周病患者牙龈组织、龈沟液和血清中均可检测到IL-17及Th17细胞增多45, 46, 47, 48, 49。另外,牙周病致病菌Pg可以通过TLR信号通路、BDKRB2信号通路、PAR-2信号通路等驱动IL-17响应50, 51, 52。因此,Th17是否为牙周病与MS之间的纽带值得进一步探究。

一项大样本病例对照研究发现,MS患者慢性牙周炎的患病率显著高于健康对照组53。有研究者以牙周炎主要致病菌Pg为切入点进行研究,发现皮下接种该菌能加重EAE小鼠的病情54。并且有研究显示,Pg-LPS可能通过TLR2信号通路加重EAE小鼠的神经损伤55。这些数据提示牙周致病菌Pg可能是加重MS的直接原因。

四、MDD

MDD是一种致残性疾病,限制患者的日常活动,使患者生活质量恶化。在诊断为MDD的患者中,发生并发症尤其是慢性炎症的风险显著升高,而慢性炎症又进一步加重了MDD的总体预后。牙周病作为典型的慢性炎症性疾病,与MDD的关系也被广泛研究。

多项系统回顾和荟萃分析表明牙周病与MDD有相关性56, 57, 58, 59。牙周病造成的口腔问题,如口臭、口腔卫生差和缺牙可通过社会心理因素(损害自尊、被孤立、沮丧、食欲不振等)加重MDD的发展60, 61。一项对12 708例牙周病患者和50 832名牙周健康对照者随访10年的观察性研究显示,牙周病患者继发MDD的概率更高62。这一结果表明,牙周病是继发MDD的独立危险因素,与性别、年龄以及除糖尿病、酗酒和癌症以外的其他合并症无关。MDD的严重程度与牙周健康状况呈显著正相关63。最新的分子层面研究发现,神经肽基因ADM、IGF2、PDYN和RETN在牙周病和MDD之间交叉,FOSB在转录组水平上是与这些神经肽相关的串扰基因64

慢性牙周炎引起的神经炎症,特别是促炎细胞因子的表达,已被视为诱导MDD的潜在原因7。在伴有牙周病的MDD中,氧化应激和亚硝化应激指数升高(包括一氧化氮代谢物和过氧化氢),这可能在MDD的发病机制中起一定作用65。给大鼠持续灌胃Pg和聚核梭杆菌(Fusobacterium nucleatum,Fn)后进行慢性轻度应激诱导抑郁模型,发现牙周病显著增加MDD的大鼠额叶皮层中的促炎因子(TNF-α、IL-1β和NF-κB)水平,这与脂蛋白APOA1将细菌LPS转运入脑以及Fn入侵脑实质有关66。根据上述研究,推测牙周病诱发MDD的生物学机制包括以下两种:①牙周病引起全身低度炎症进而导致神经炎症(即CNS中小胶质细胞激活,相关的促炎细胞因子水平升高);②牙周病原体及其炎症产物直接侵入脑组织引起神经炎症反应。

五、结语

牙周病不仅影响患者的口腔局部组织,造成咀嚼功能下降、影响美观和社交等问题,而且可能以神经炎症为纽带,诱发和加重神经系统疾病。牙周病诱导和加重神经系统疾病的可能机制为:其一,直接作用。牙周致病菌及其代谢产物直接作用于靶细胞,造成神经病变。例如,在AD中Pg的主要毒力因子牙龈蛋白酶与神经元共定位,且具有分解tau蛋白的能力,造成大量变性tau蛋白聚集,加重认知障碍13。在MDD中Pg-LPS可通过血脑屏障与星形胶质细胞上的TLR4受体结合,降低神经营养因子受体p75的表达,进而造成小鼠出现抑郁样表型67。其二,间接作用。牙周致病菌及其代谢产物通过免疫系统诱发神经炎症,间接造成神经病变。间接作用的发挥又包括以下两种途径:①神经途径,迷走神经传入纤维对TNF-α和IL-1β等免疫递质升高有反应68,而体内多种内脏器官都受迷走神经传入纤维支配。当牙周病造成全身炎症并影响肠道、肝脏等脏器时,迷走神经传入投射到迷走神经背丛,并从那里进入大脑的不同区域,引起神经炎症。②循环途径,细菌LPS可异常激活血脑屏障的基质金属蛋白酶,从而增加血脑屏障的通透性69。外周炎性因子可通过缺乏完整血脑屏障的室周器和脉络膜层进入大脑,与脑血管内皮细胞、神经元和胶质细胞上相应的炎症因子受体结合,加重神经炎症。例如,Pg可显著提高帕金森病小鼠血清中IL-17A的水平,并增加黑质多巴胺能神经元的IL-17A受体表达,从而引发神经元损伤34。在MS中,口腔感染Pg也可促进EAE小鼠淋巴细胞的增殖,加重疾病的严重程度54

这些机制中的微生物和信号通路可以作为潜在靶点,丰富神经退行性变的治疗途径。例如,针对AD的关键微生物疫苗接种已取得一定效果70。另外,牙周病的一些生物标志物和抗体水平可作为监测工具,为神经系统疾病的早发现和早治疗提供可能。

今后,在对神经系统疾病的防治中,越来越需要从医疗整体观出发,不仅要对症治疗,而且要加强口腔健康的维护。然而,由于神经系统疾病患者往往不能合作,改善其口腔卫生和治疗牙周病对口腔医师而言是一个挑战。

利益冲突
利益冲突

所有作者声明不存在利益冲突

参考文献
[1]
Román-MaloL, BullonP. Influence of the periodontal disease, the most prevalent inflammatory event, in peroxisome proliferator-activated receptors linking nutrition and energy metabolism[J]. Int J Mol Sci, 2017, 18(7): 1438. DOI: 10.3390/ijms18071438.
[2]
SlotsJ. Periodontitis: facts, fallacies and the future[J]. Periodontol 2000, 2017, 75(1): 7-23. DOI: 10.1111/prd.12221.
[3]
Muñoz AguileraE, SuvanJ, ButiJ, et al. Periodontitis is associated with hypertension: a systematic review and meta-analysis[J]. Cardiovasc Res, 2020, 116(1):28-39. DOI: 10.1093/cvr/cvz201.
[4]
PreshawPM, AlbaAL, HerreraD, et al. Periodontitis and diabetes: a two-way relationship[J]. Diabetologia, 2012, 55(1): 21-31. DOI: 10.1007/s00125-011-2342-y.
[5]
HussainSB, BotelhoJ, MachadoV, et al. Is there a bidirectional association between rheumatoid arthritis and periodontitis? A systematic review and meta-analysis[J]. Semin Arthritis Rheum, 2020, 50(3): 414-422. DOI: 10.1016/j.semarthrit.2020.01.009.
[6]
XieJ, GorléN, VandendriesscheC, et al. Low-grade peripheral inflammation affects brain pathology in the AppNL-G-Fmouse model of Alzheimer′s disease[J]. Acta Neuropathol Commun, 2021, 9(1): 163. DOI: 10.1186/s40478-021-01253-z.
[7]
HashiokaS, InoueK, HayashidaM, et al. Implications of systemic inflammation and periodontitis for major depression[J]. Front Neurosci, 2018, 12: 483. DOI: 10.3389/fnins.2018.00483.
[8]
SinghraoSK, OlsenI. Assessing the role of Porphyromonas gingivalis in periodontitis to determine a causative relationship with Alzheimer′s disease[J]. J Oral Microbiol, 2019, 11(1): 1563405. DOI: 10.1080/20002297.2018.1563405.
[9]
HussainR, ZubairH, PursellS, et al. Neurodegenerative diseases: regenerative mechanisms and novel therapeutic approaches[J]. Brain Sci, 2018, 8(9): 177. DOI: 10.3390/brainsci8090177.
[10]
SuL, FaluyiYO, HongYT, et al. Neuroinflammatory and morphological changes in late-life depression: the NIMROD study[J]. Br J Psychiatry, 2016, 209(6): 525-526. DOI: 10.1192/bjp.bp.116.190165.
[11]
FeiginVL, VosT, NicholsE, et al. The global burden of neurological disorders: translating evidence into policy[J]. Lancet Neurol, 2020, 19(3): 255-265. DOI: 10.1016/S1474-4422(19)30411-9.
[12]
BorsaL, DuboisM, SaccoG, et al. Analysis the link between periodontal diseases and alzheimer′s disease: a systematic review[J]. Int J Environ Res Public Health, 2021, 18(17): 9312. DOI: 10.3390/ijerph18179312.
[13]
DominySS, LynchC, ErminiF, et al. Porphyromonas gingivalis in Alzheimer′s disease brains: evidence for disease causation and treatment with small-molecule inhibitors[J]. Sci Adv, 2019, 5(1): eaau3333. DOI: 10.1126/sciadv.aau3333.
[14]
ChenCK, WuYT, ChangYC. Association between chronic periodontitis and the risk of Alzheimer′s disease: a retrospective, population-based, matched-cohort study[J]. Alzheimers Res Ther, 2017, 9(1): 56. DOI: 10.1186/s13195-017-0282-6.
[15]
HolmerJ, EriksdotterM, SchultzbergM, et al. Association between periodontitis and risk of Alzheimer′s disease, mild cognitive impairment and subjective cognitive decline: a case-control study[J]. J Clin Periodontol, 2018, 45(11): 1287-1298. DOI: 10.1111/jcpe.13016.
[16]
TsuneishiM, YamamotoT, YamaguchiT, et al. Association between number of teeth and Alzheimer′s disease using the National Database of Health Insurance Claims and Specific Health Checkups of Japan[J]. PLoS One, 2021, 16(4): e0251056. DOI: 10.1371/journal.pone.0251056.
[17]
HateganSI, KamerSA, CraigRG, et al. Cognitive dysfunction in young subjects with periodontal disease[J]. Neurol Sci, 2021, 42(11): 4511-4519. DOI: 10.1007/s10072-021-05115-3.
[18]
MiklossyJ, McGeerPL. Common mechanisms involved in Alzheimer′s disease and type 2 diabetes: a key role of chronic bacterial infection and inflammation[J]. Aging (Albany NY), 2016, 8(4): 575-588. DOI: 10.18632/aging.100921.
[19]
CestariJA, FabriGM, KalilJ, et al. Oral infections and cytokine levels in patients with alzheimer′s disease and mild cognitive impairment compared with controls[J]. J Alzheimers Dis, 2016, 52(4): 1479-1485. DOI: 10.3233/JAD-160212.
[20]
JinJ, GuangM, OgbuehiAC, et al. Shared molecular mechanisms between Alzheimer′s disease and periodontitis revealed by transcriptomic analysis[J]. Biomed Res Int, 2021, 2021: 6633563. DOI: 10.1155/2021/6633563.
[21]
HuY, LiH, ZhangJ, et al. Periodontitis induced by P. gingivalis-LPS is associated with neuroinflammation and learning and memory impairment in Sprague-Dawley rats[J]. Front Neurosci, 2020, 14: 658. DOI: 10.3389/fnins.2020.00658.
[22]
ZhangJ, YuC, ZhangX, et al. Porphyromonas gingivalis lipopolysaccharide induces cognitive dysfunction, mediated by neuronal inflammation via activation of the TLR4 signaling pathway in C57BL/6 mice[J]. J Neuroinflammation, 2018, 15(1): 37. DOI: 10.1186/s12974-017-1052-x.
[23]
DingY, RenJ, YuH, et al. Porphyromonas gingivalis, a periodontitis causing bacterium, induces memory impairment and age-dependent neuroinflammation in mice[J]. Immun Ageing, 2018, 15: 6. DOI: 10.1186/s12979-017-0110-7.
[24]
IlievskiV, ZuchowskaPK, GreenSJ, et al. Chronic oral application of a periodontal pathogen results in brain inflammation, neurodegeneration and amyloid beta production in wild type mice[J]. PLoS One, 2018, 13(10): e0204941. DOI: 10.1371/journal.pone.0204941.
[25]
WuZ, NiJ, LiuY, et al. Cathepsin B plays a critical role in inducing Alzheimer′s disease-like phenotypes following chronic systemic exposure to lipopolysaccharide from Porphyromonas gingivalis in mice[J]. Brain Behav Immun, 2017, 65: 350-361. DOI: 10.1016/j.bbi.2017.06.002.
[26]
QiuC, YuanZ, HeZ, et al. Lipopolysaccharide preparation derived from porphyromonas gingivalis induces a weaker immuno-inflammatory response in BV-2 microglial cells than Escherichia coli by differentially activating TLR2/4-mediated NF-κB/STAT3 signaling pathways[J]. Front Cell Infect Microbiol, 2021, 11: 606986. DOI: 10.3389/fcimb.2021.606986.
[27]
GordonR, AlbornozEA, ChristieDC, et al. Inflammasome inhibition prevents α-synuclein pathology and dopaminergic neurodegeneration in mice[J]. Sci Transl Med, 2018, 10(465): eaah4066. DOI: 10.1126/scitranslmed.aah4066.
[28]
BotelhoJ, LyraP, ProençaL, et al. Relationship between blood and standard biochemistry levels with periodontitis in parkinson′s disease patients: data from the NHANES 2011-2012[J]. J Pers Med, 2020, 10(3): 69. DOI: 10.3390/jpm10030069.
[29]
PoeweW, SeppiK, TannerCM, et al. Parkinson disease[J]. Nat Rev Dis Primers, 2017, 3: 17013. DOI: 10.1038/nrdp.2017.13.
[30]
AdamsB, NunesJM, PageMJ, et al. Parkinson′s disease: a systemic inflammatory disease accompanied by bacterial inflammagens[J]. Front Aging Neurosci, 2019, 11: 210. DOI: 10.3389/fnagi.2019.00210.
[31]
OlsenI, KellDB, PretoriusE. Is Porphyromonas gingivalis involved in Parkinson′s disease?[J]. Eur J Clin Microbiol Infect Dis, 2020, 39(11): 2013-2018. DOI: 10.1007/s10096-020-03944-2.
[32]
ChenCK, WuYT, ChangYC. Periodontal inflammatory disease is associated with the risk of Parkinson′s disease: a population-based retrospective matched-cohort study[J]. PeerJ, 2017, 5: e3647. DOI: 10.7717/peerj.3647.
[33]
ChenCK, HuangJY, WuYT, et al. Dental scaling decreases the risk of Parkinson′s disease: a nationwide population-based nested case-control study[J]. Int J Environ Res Public Health, 2018, 15(8): 1587. DOI: 10.3390/ijerph15081587.
[34]
FengYK, WuQL, PengYW, et al. Oral P. gingivalis impairs gut permeability and mediates immune responses associated with neurodegeneration in LRRK2 R1441G mice[J]. J Neuroinflammation, 2020, 17(1): 347. DOI: 10.1186/s12974-020-02027-5.
[35]
ReichDS, LucchinettiCF, CalabresiPA. Multiple sclerosis[J]. N Engl J Med, 2018, 378(2): 169-180. DOI: 10.1056/NEJMra1401483.
[36]
BrowneP, ChandraratnaD, AngoodC, et al. Atlas of multiple sclerosis 2013: a growing global problem with widespread inequity[J]. Neurology, 2014, 83(11): 1022-1024. DOI: 10.1212/WNL.0000000000000768.
[37]
CompstonA, ColesA. Multiple sclerosis[J]. Lancet, 2008, 372(9648): 1502-1517. DOI: 10.1016/S0140-6736(08)61620-7.
[38]
HemmerB, KerschensteinerM, KornT. Role of the innate and adaptive immune responses in the course of multiple sclerosis[J]. Lancet Neurol, 2015, 14(4): 406-419. DOI: 10.1016/S1474-4422(14)70305-9.
[39]
BecherB, SpathS, GovermanJ. Cytokine networks in neuroinflammation[J]. Nat Rev Immunol, 2017, 17(1): 49-59. DOI: 10.1038/nri.2016.123.
[40]
van LangelaarJ, van der Vuurst de VriesRM, JanssenM, et al. T helper 17.1 cells associate with multiple sclerosis disease activity: perspectives for early intervention[J]. Brain, 2018, 141(5): 1334-1349. DOI: 10.1093/brain/awy069.
[41]
McGinleyAM, SuttonCE, EdwardsSC, et al. Interleukin-17A serves a priming role in autoimmunity by recruiting IL-1β-producing myeloid cells that promote pathogenic T cells[J]. Immunity, 2020, 52(2): 342-356.e6. DOI: 10.1016/j.immuni.2020.01.002.
[42]
HavrdováE, BelovaA, GoloborodkoA, et al. Activity of secukinumab, an anti-IL-17A antibody, on brain lesions in RRMS: results from a randomized, proof-of-concept study[J]. J Neurol, 2016, 263(7): 1287-1295. DOI: 10.1007/s00415-016-8128-x.
[43]
MoutsopoulosNM, KlingHM, AngelovN, et al. Porphyromonas gingivalis promotes Th17 inducing pathways in chronic periodontitis[J]. J Autoimmun, 2012, 39(4): 294-303. DOI: 10.1016/j.jaut.2012.03.003.
[44]
DutzanN, KajikawaT, AbuslemeL, et al. A dysbiotic microbiome triggers TH17 cells to mediate oral mucosal immunopathology in mice and humans[J]. Sci Transl Med, 2018, 10(463): eaat0797. DOI: 10.1126/scitranslmed.aat0797.
[45]
AdibradM, DeyhimiP, Ganjalikhani HakemiM, et al. Signs of the presence of Th17 cells in chronic periodontal disease[J]. J Periodontal Res, 2012, 47(4): 525-531. DOI: 10.1111/j.1600-0765.2011.01464.x.
[46]
OhyamaH, Kato-KogoeN, KuharaA, et al. The involvement of IL-23 and the Th17 pathway in periodontitis[J]. J Dent Res, 2009, 88(7): 633-638. DOI: 10.1177/0022034509339889.
[47]
AyZY, YılmazG, OzdemM, et al. The gingival crevicular fluid levels of interleukin-11 and interleukin-17 in patients with aggressive periodontitis[J]. J Periodontol, 2012, 83(11): 1425-1431. DOI: 10.1902/jop.2012.110585.
[48]
SchenkeinHA, KoertgeTE, BrooksCN, et al. IL-17 in sera from patients with aggressive periodontitis[J]. J Dent Res, 2010, 89(9): 943-947. DOI: 10.1177/0022034510369297.
[49]
WangH, LuoZ, LeiL, et al. Interaction between oral lichen planus and chronic periodontitis with Th17-associated cytokines in serum[J]. Inflammation, 2013, 36(3): 696-704. DOI: 10.1007/s10753-013-9594-2.
[50]
MonteiroAC, ScovinoA, RaposoS, et al. Kinin danger signals proteolytically released by gingipain induce Fimbriae-specific IFN-gamma-and IL-17-producing T cells in mice infected intramucosally with Porphyromonas gingivalis[J]. J Immunol, 2009, 183(6): 3700-3711. DOI: 10.4049/jimmunol.0900895.
[51]
WongDM, TamV, LamR, et al. Protease-activated receptor 2 has pivotal roles in cellular mechanisms involved in experimental periodontitis[J]. Infect Immun, 2010, 78(2): 629-638. DOI: 10.1128/IAI.01019-09.
[52]
GaddisDE, MichalekSM, KatzJ. TLR4 signaling via MyD88 and TRIF differentially shape the CD4+T cell response to Porphyromonas gingivalis hemagglutinin B[J]. J Immunol, 2011, 186(10): 5772-5783. DOI: 10.4049/jimmunol.1003192.
[53]
SheuJJ, LinHC. Association between multiple sclerosis and chronic periodontitis: a population-based pilot study[J]. Eur J Neurol, 2013, 20(7): 1053-1059. DOI: 10.1111/ene.12103.
[54]
PolakD, ShmueliA, BrennerT, et al. Oral infection with P. gingivalis exacerbates autoimmune encephalomyelitis[J]. J Periodontol, 2018, 89(12): 1461-1466. DOI: 10.1002/JPER.17-0531.
[55]
ShapiraL, AyalonS, BrennerT. Effects of Porphyromonas gingivalis on the central nervous system: activation of glial cells and exacerbation of experimental autoimmune encephalomyelitis[J]. J Periodontol, 2002, 73(5): 511-516. DOI: 10.1902/jop.2002.73.5.511.
[56]
CademartoriMG, GastalMT, NascimentoGG, et al. Is depression associated with oral health outcomes in adults and elders? A systematic review and meta-analysis[J]. Clin Oral Investig, 2018, 22(8): 2685-2702. DOI: 10.1007/s00784-018-2611-y.
[57]
AraújoMM, MartinsCC, CostaLC, et al. Association between depression and periodontitis: a systematic review and meta-analysis[J]. J Clin Periodontol, 2016, 43(3): 216-228. DOI: 10.1111/jcpe.12510.
[58]
ZhengDX, KangXN, WangYX, et al. Periodontal disease and emotional disorders: a meta-analysis[J]. J Clin Periodontol, 2021, 48(2): 180-204. DOI: 10.1111/jcpe.13395.
[59]
LaforgiaA, CorsaliniM, StefanachiG, et al. Assessment of psychopatologic traits in a group of patients with adult chronic periodontitis: study on 108 cases and analysis of compliance during and after periodontal treatment[J]. Int J Med Sci, 2015, 12(10): 832-839. DOI: 10.7150/ijms.12317.
[60]
DumitrescuAL. Depression and inflammatory periodontal disease considerations-an interdisciplinary approach[J]. Front Psychol, 2016, 7: 347. DOI: 10.3389/fpsyg.2016.00347.
[61]
SaintrainMV, de SouzaEH. Impact of tooth loss on the quality of life[J]. Gerodontology, 2012, 29(2): e632-636. DOI: 10.1111/j.1741-2358.2011.00535.x.
[62]
HsuCC, HsuYC, ChenHJ, et al. Association of periodontitis and subsequent depression: a nationwide population-based study[J]. Medicine (Baltimore), 2015, 94(51): e2347. DOI: 10.1097/MD.0000000000002347.
[63]
JelavićS, BajićŽ, Filipčić, et al. Periodontal status and the efficacy of the first-line treatment of major depressive disorder[J]. Clin Exp Dent Res, 2022, 8(1): 366-373. DOI: 10.1002/cre2.492.
[64]
SunC, HanJ, BaiY, et al. Neuropeptides as the shared genetic crosstalks linking periodontitis and major depression disorder[J]. Dis Markers, 2021, 2021: 3683189. DOI: 10.1155/2021/3683189.
[65]
MaesM, GaleckiP, ChangYS, et al. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2011, 35(3): 676-692. DOI: 10.1016/j.pnpbp.2010.05.004.
[66]
MartínezM, Martín-HernándezD, VirtoL, et al. Periodontal diseases and depression: a pre-clinical in vivo study[J]. J Clin Periodontol, 2021, 48(4): 503-527. DOI: 10.1111/jcpe.13420.
[67]
WangYX, KangXN, CaoY, et al. Porphyromonas gingivalis induces depression via downregulating p75NTR-mediated BDNF maturation in astrocytes[J]. Brain Behav Immun, 2019, 81: 523-534. DOI: 10.1016/j.bbi.2019.07.012.
[68]
D′MelloC, SwainMG. Immune-to-brain communication pathways in inflammation-associated sickness and depression[J]. Curr Top Behav Neurosci, 2017, 31: 73-94. DOI: 10.1007/7854_2016_37.
[69]
FristerA, SchmidtC, SchnebleN, et al. Phosphoinositide 3-kinase γ affects LPS-induced disturbance of blood-brain barrier via lipid kinase-independent control of cAMP in microglial cells[J]. Neuromolecular Med, 2014, 16(4): 704-713. DOI: 10.1007/s12017-014-8320-z.
[70]
CarterCJ. Alzheimer′s disease plaques and tangles: cemeteries of a pyrrhic victory of the immune defence network against herpes simplex infection at the expense of complement and inflammation-mediated neuronal destruction[J]. Neurochem Int, 2011, 58(3): 301-320. DOI: 10.1016/j.neuint.2010.12.003.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词