综述
流感抗病毒药物治疗进展
中华医学杂志, 2023,103(4) : 293-299. DOI: 10.3760/cma.j.cn112137-20220602-01230
摘要

流感是由正黏病毒科中的流感病毒引起的急性呼吸道传染病,具有季节流行性和极强的传染性。在目前已知的四种类型的流感病毒中,甲型流感病毒给人类健康带来的影响最大,也给全球公共卫生带来了严重的威胁。迄今为止,已有多种小分子抗流感病毒药物陆续投入临床,为人类对抗流感病毒引起的急性呼吸道感染提供了有力的武器。然而,流感病毒快速突变的特点使其逐渐对传统的抗病毒药物耐药,使得现有抗流感病毒药物的有效性降低。因此,开发更多针对流感病毒感染的治疗药物仍然迫在眉睫。本文综述近年来新提出的小分子抗流感病毒药物,包括长效神经氨酸酶抑制剂拉尼米韦,新型病毒聚合酶抑制剂巴洛沙韦、法匹拉韦、匹莫迪韦以及病毒核蛋白抑制剂、血凝素抑制剂等,简要介绍药物药理作用并总结最新临床试验结果,对未来流感治疗的研究进行展望,为今后抗流感病毒药物研发提供参考。

引用本文: 宋融融, 徐九洋, 刘红玉, 等.  流感抗病毒药物治疗进展 [J] . 中华医学杂志, 2023, 103(4) : 293-299. DOI: 10.3760/cma.j.cn112137-20220602-01230.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

版权归中华医学会所有。

未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。

流感病毒属于正黏病毒科,为有包膜的负链RNA病毒,根据抗原特性可分为甲型、乙型、丙型和丁型流感病毒,其中对人类健康威胁最大的是甲型流感病毒。据世界卫生组织估计,流感在全球每年导致29万~65万例呼吸道疾病相关死亡1。我国流行病学数据表明,在2010—2011至2014—2015年流感季,中国平均每年有8.8万例流感相关超额死亡2。在甲型流感病毒中,H1N1和H3N2亚型可引起季节性和大流行性感染3。由于流感病毒具有突变迅速以及抗原变化难以预测等特点,疫苗生产往往具有滞后性,无法为人群提供最及时有效的保护4。根据我国《流行性感冒诊疗方案(2020年版)》5,“对于重症或有重症流感高危因素的流感样病例,应当尽早给予抗流感病毒经验性治疗”,以减少并发症,降低病死率。因此,抗流感病毒的药物治疗仍是流感治疗的重要策略。

目前,已被美国食品药品监督管理局(Food and Drug Administration,FDA)批准用于流感治疗的小分子抗病毒药物包括神经氨酸酶抑制剂(neuraminidase inhibitor,NAI)、M2离子通道抑制剂和病毒RNA聚合酶抑制剂(巴洛沙韦)。然而,由于流感病毒对M2离子通道抑制剂广泛耐药,该类药物已不再被推荐用于临床流感的治疗;NAI的代表性药物奥司他韦仅在症状出现后48 h内开始使用有效,一些病毒突变也已显示出对其的耐药性6。因此,迫切需要寻求更多针对流感病毒治疗的药物。

本文通过查阅近年来流感治疗领域最新进展的相关文献,并对它们进行总结概括,分别介绍长效NAI、病毒RNA聚合酶抑制剂、病毒核蛋白抑制剂研究方面的进展,以及其他具有治疗前景的药物和方法。

一、NAI

流感病毒表面存在两种糖蛋白,分别是血凝素(hemagglutinin,HA)和神经氨酸酶(neuraminidase,NA)(图1)。其中,HA在病毒进入宿主细胞过程中发挥作用,而NA则通过切割细胞表面的唾液酸,帮助子代病毒完成从宿主细胞的释放7。NAI通过抑制流感病毒NA活性起到抗流感病毒的作用。目前被FDA批准用于流感治疗的NAI包括奥司他韦(Oseltamivir)、扎那米韦(Zanamivir)和帕拉米韦(Peramivir)。

点击查看大图
图1
流感病毒复制过程及药物作用靶点
点击查看大图

注:流感病毒生命周期需经历吸附、进入、复制、组装和释放过程,抗流感病毒药物可分别在上述各阶段发挥作用;FA-6005可抑制病毒NP蛋白功能;巴洛沙韦、ANA-0、法匹拉韦、匹莫迪韦以及ZSP1273则可通过抑制病毒RNA聚合酶活性阻止病毒合成;拉尼米韦抑制NA蛋白活性从而阻止病毒颗粒释放;vRNP为病毒核糖核蛋白体复合物;PA为聚合酶酸性蛋白;PB1为聚合酶碱性蛋白酶1;PB2为聚合酶碱性蛋白酶2;M1为基质蛋白;M2为离子通道蛋白;NS1为非结构蛋白;NEP为核输出蛋白;HA为血凝素;NA为神经氨酸酶

图1
流感病毒复制过程及药物作用靶点

辛酸拉尼米韦(Laninamivir octanoate)是拉尼米韦的前药,是一种长效NAI。它可以有效抑制包括奥司他韦耐药毒株在内的各亚型的甲型和乙型流感病毒的NA活性8。其吸入制剂已于2010年在日本上市,用于治疗急性单纯型甲型或乙型流感,并从2013年起被用于流感的预防9, 10。2016年公布的双盲多中心随机安慰剂对照临床研究结果表明,暴露后吸入单剂拉尼米韦进行预防可有效降低临床流感感染的风险11,拉尼米韦仅需单次吸入给药就可达到治疗效果,大大提高了患者的依从性,为口服和静脉用药不方便的人群提供了良好的选择。

二、病毒RNA聚合酶抑制剂

流感病毒RNA聚合酶是由3个亚单位组成的异源三聚体复合物,三个亚基分别是合成病毒RNA的聚合酶碱性蛋白1(polymerase basic protein 1,PB1),与宿主细胞pre-mRNA结合的聚合酶碱性蛋白2(polymerase basic protein 2,PB2),以及具有内切酶活性、负责夺取pre-mRNA帽状结构的聚合酶酸性蛋白(polymerase acid protein,PA)12。病毒RNA聚合酶在病毒复制中发挥的关键作用,是抗流感病毒药物作用的新靶点。

(一)PA抑制剂

巴洛沙韦(Baloxavir)于2018年获FDA批准用于治疗12岁及以上单纯型流感,并于2021年正式在中国上市。前体药物巴洛沙韦酯在体内转化成巴洛沙韦酸,选择性抑制病毒聚合酶PA亚基的内切酶活性,对包括NAI耐药毒株在内的甲型和乙型流感病毒均有抑制作用13, 14。在我国进行的Ⅰ期临床研究结果表明,健康中国成年人单次服用40或80 mg巴洛沙韦耐受性良好,不良反应类型、发生率以及治疗效果与其他亚洲人群差异无统计学意义15。巴洛沙韦Ⅲ期随机双盲安慰剂对照试验(CAPSTONE-1)结果显示,单剂巴洛沙韦较安慰剂显著缩短了成人门诊患者H3N2感染后流感症状缓解的中位时间,并且与奥司他韦相比在治疗后第1天取得更大幅度的病毒载量下降16。在针对高危门诊患者的随机安慰剂对照临床试验(CAPSTONE-2)中,症状出现48 h内使用巴洛沙韦同样可缩短流感症状缓解时间,并且减少并发症的出现17。由于巴洛沙韦具有仅需单剂给药的优势,对于儿童等群体可能更具吸引力,一项纳入临床诊断为流感的1~12岁儿童的双盲随机对照试验(miniSTONE-2)结果表明,单次口服巴洛沙韦可有效缓解流感症状,效果与5 d方案奥司他韦类似18。除上述治疗作用外,已有证据表明,暴露于患流感的家庭成员后使用单剂量巴洛沙韦,可以有效预防流感病毒感染19,更多的临床试验正在进行中(BLOCKSTONE、CENTERSTONE)。在巴洛沙韦的临床试验中,发现了病毒PA亚基I38T/M/F突变。有文献报道,PA亚基I38X替代突变与病毒滴度的短暂上升、病毒可检测时间和初期症状缓解时间的延长有关20。除此之外,还发现在未接受巴洛沙韦治疗的儿童中检测到的PA亚基E23K突变使得H1N1病毒对巴洛沙韦的敏感性也有所降低,并且这种突变很有可能在人群中传播21

巴洛沙韦联合奥司他韦在体外和小鼠模型中均显示出了协同效应22,并且联合用药可能减少巴洛沙韦单一治疗所带来的流感病毒PA-I38X氨基酸替代突变23。但是在临床研究中,一项随机平行双盲安慰剂对照试验(FLAGSTONE)结果显示,巴洛沙韦与NAI联合治疗重症流感患者,没有观察到较NAI单药有更好的效果,因此提出不建议将这两种药物联合使用作为常规治疗方法24

除巴洛沙韦外,临床前研究发现药物ANA-025以及RO-726, 27,也可通过抑制PA亚基减轻流感病毒在小鼠中的致病性,提高小鼠生存率。

(二)PB1抑制剂

法匹拉韦(Favipiravir)于2014年在日本获得批准用于治疗成人对现有抗病毒药物无效或效果不佳的新型或再次流行的流感病毒感染,并于2020年在我国作为对新型冠状病毒肺炎(corona virus disease 2019,COVID-19)具有潜在疗效的药物获批上市。尽管随后公布的随机对照试验结果表明,法匹拉韦在治疗轻中度COVID-19感染方面并没有显示出较标准疗法更好的效果28,但作为核苷类似物,法匹拉韦却能有效抑制流感病毒PB1亚基活性,对包括耐NAI和耐金刚烷胺类药物的毒株在内的流感病毒均有抑制活性,同时几乎不抑制人类DNA的合成29, 30。我国进行的一项临床研究结果显示,法匹拉韦与奥司他韦联合治疗可较奥司他韦单药治疗缩短重症流感患者的临床康复所需时间31。甲型流感病毒PB1亚基的K229R突变使病毒产生对法匹拉韦的耐药性;该突变会降低病毒的适应度,但PA亚基的P653L突变可以在不改变其耐药性的情况下弥补这种影响,同时具有这两种突变的病毒对法匹拉韦的敏感性降低30倍32

(三)PB2抑制剂

匹莫迪韦(Pimodivir)通过阻止病毒PB2亚基与宿主mRNA的7-甲基鸟嘌呤核苷酸帽结构域结合,起到抑制病毒复制的作用。匹莫迪韦于2017年获得FDA的快速通道审批资格,在体外,它与奥司他韦具有协同作用33,对包括NAI耐药毒株和金刚烷胺类耐药毒株在内的甲型流感病毒有效,而对乙型流感病毒则无效34。临床研究(TOPAZ)结果表明,匹莫迪韦用于治疗急性单纯型甲型流感患者时,可呈剂量依赖性地降低病毒载量,并且与奥司他韦联合使用时效果更加显著35。另一项尚未正式发表的临床研究数据显示,在高危门诊患者中,匹莫迪韦与奥司他韦联合治疗同样可以缩短流感症状持续时间36。临床研究已发现一些突变可降低病毒对匹莫迪韦的敏感性37

ZSP1273可以抑制PB2亚基“夺帽”活性从而阻断病毒RNA合成。Ⅰ期临床研究显示ZSP1273在健康成年人中耐受性良好38,有望通过进一步Ⅱ期、Ⅲ期临床试验验证其疗效。

三、以病毒核蛋白为靶点的药物

流感病毒核蛋白(nucleoprotein,NP)包裹在病毒RNA上39,形成病毒核糖核蛋白体(viral ribonucleoprotein,vRNP),介导病毒生命周期中包括基因组复制在内的许多关键步骤40,并且在流感病毒中保持高度的保守,因此NP蛋白已被考虑作为抗流感病毒药物的作用靶点41, 42, 43

萘普生(Naproxen)属于非甾体抗炎药(NSAIDs)的一种,除抗炎作用外,它还可以通过与NP蛋白结合、阻断NP核输出阻断流感病毒的复制44, 45, 46,Ⅱb/Ⅲ期临床试验显示,克拉霉素-萘普生-奥司他韦联合治疗降低了H3N2流感感染住院患者30 d和90 d的病死率,并缩短了住院时间47。在另一项针对住院儿童流感患者的研究中,克拉霉素-萘普生-奥司他韦联合治疗组比奥司他韦单一用药治疗组所需的退热时间更短,流感病毒滴度降低的速度也更快48。由于萘普生已经上市并且广泛应用于临床,将其开发作为临床抗流感药物所需经历的时间可能比其他新型抗流感药物所需时间更短46

此外,临床前研究发现FA-6005可以抑制vRNP的活性并阻断其胞内运输,并可通过多种机制干扰病毒生命周期,在细胞及动物模型中得到验证49,有待临床试验进一步评估。

四、针对病毒血凝素的药物

硝唑尼特(Nitazoxanide)是一种噻唑类抗感染药物,最初被用于抗寄生虫治疗,后来发现它可以在翻译后水平通过选择性阻止病毒HA的成熟、胞内转运、嵌入宿主细胞膜以及病毒离开宿主细胞等步骤,起到抗流感病毒的作用50。硝唑尼特与奥司他韦显示出体外协同抗病毒活性,并且在动物模型中预防病毒向下呼吸道传播51。临床试验显示,硝唑尼特600 mg每日2次持续5 d治疗可缩短门诊患者流感症状持续时间52;但在重症流感患者中,硝唑尼特联合标准治疗在缩短住院时间方面没有显著的效果53。硝唑尼特经过优化后的化合物4a/4d抗病毒活性为原先的10倍,体外显示与奥司他韦、扎那米韦有协同效应,有待进一步临床研究评估54

针对流感病毒HA蛋白的单克隆疗法是小分子抗病毒药物的很好补充。已经进入临床研究评估阶段的单克隆抗体包括CR626155、VIS41056、MHAA4549A57等,但疗效并不理想。此外,高滴度抗流感血浆和免疫球蛋白也进入临床研究评估58, 59,待进一步探索。

五、其他

近年来研究发现,阿奇霉素不仅具有抗菌活性,还具有抗病毒和免疫调节作用,可以增强抗病毒模式识别受体的表达,调节免疫细胞活性,减轻炎症反应60。在体外,阿奇霉素可以通过抑制内体酸化,阻断pH依赖的病毒与内体之间的膜融合,对各种亚型的甲型流感病毒发挥强大的抑制作用,这一机制的揭示也表明内体的酸化可能是抗流感病毒药物开发的一个新靶点61。临床研究结果表明,阿奇霉素作为辅助用药,对重症流感患者在不影响病毒清除的情况下具有明显的抗炎作用62;与奥司他韦单药治疗相比,奥司他韦联合阿奇霉素治疗可以加快住院流感患者的恢复速度,减少继发性细菌感染的发生率。这表明,阿奇霉素与抗病毒药物的联合使用,可能为老年人或免疫力低下患者及其他高风险的流感患者提供更多的益处63。另外一种大环内酯类药物克拉霉素也被证明能够减少H5N1和H7N9流感病毒感染的食蟹猴的肺部细胞因子水平,减轻疾病严重程度,并发现与治疗作用相比,预防性使用效果更为显著64

雷帕霉素(Rapamycin)是哺乳动物雷帕霉素靶蛋白(mechanistic target of rapamycin,mTOR)抑制剂,是一种抗肿瘤药物和强大的免疫抑制剂。一项在老年人群中开展的临床研究结果表明,服用低剂量哺乳动物雷帕霉素靶蛋白复合物1抑制剂改善了老年受试者流感疫苗接种后的反应,并且可以降低老年受试者1年内的流感感染率65。近期有个案报道雷帕霉素与奥司他韦联合使用成功治疗H5N6型高致病性禽流感患者66,提示奥司他韦联合雷帕霉素可能是挽救重症流感患者的1种有效的治疗方法。

针对重症流感导致的急性肺损伤,干细胞治疗是一种潜在的新型治疗手段。干细胞可以通过调节宿主免疫应答和炎症反应以及促进组织再生减轻肺部损伤,并且已有研究证明,骨髓间充质干细胞移植显著降低了H7N9感染导致的急性呼吸窘迫综合征患者的病死率67

其他天然化合物如藻类代谢物,槲皮素等也被发现具有抗流感病毒活性,有待进一步的探究和开发68, 69, 70

六、流感治疗前景展望

目前NAI作为一线用药仍然在流感的治疗中发挥着中流砥柱的作用。然而NAI需要在症状出现48 h以内开始使用的特点限制了其在治疗中的应用,并且已经出现的耐药突变也给现有NAI的有效性带来了巨大的挑战。因此,开发能在症状出现48 h之后开始使用仍然有效的药物,将是很好的选择;同时我们还应尽可能多地研究作用于不同于靶点的抗流感病毒药物,以避免使用作用于单一靶点的药物带来的耐药问题。目前临床试验阶段的新型抗流感病毒药物见表1

点击查看表格
表1

新型抗流感病毒药物

表1

新型抗流感病毒药物

药物类型名称作用机制临床试验阶段

临床试验

编号

参考文献
神经氨酸酶抑制剂拉尼米韦抑制NA活性Ⅲ~Ⅳ期NCT0179388373, 74
RNA聚合酶抑制剂巴洛沙韦抑制PA亚基内切酶活性Ⅲ~Ⅳ期NCT0295435415, 16, 17, 18, 1924
法匹拉韦抑制PB1亚基Ⅲ期

NCT02008344

NCT03394209

NCT02026349

NCT01068912

NCT01728753

31
匹莫迪韦阻止PB2亚基与宿主mRNA的m7GTP帽结构结合Ⅲ期

NCT03381196

NCT03834376

NCT03376321

3575, 76
ZSP1273Ⅲ期

NCT04024137

NCT04683406

NCT03679143

38
病毒NP抑制剂萘普生阻止NP与RNA结合以及NP自结合,阻断CRM1介导的NP核输出Ⅲ期NCT0431519447, 48
抑制HA硝唑尼特抑制HA成熟、转运和嵌入细胞膜Ⅲ期

NCT01056380

NCT01227421

NCT02612922

NCT01610245

NCT03336619

52, 53

注:NA为神经氨酸酶;PA为聚合酶酸性蛋白;PB1为聚合酶碱性蛋白酶1;PB2为聚合酶碱性蛋白酶2;CRM1为染色体区域维持蛋白1

除此之外,联合用药将是未来流感治疗的趋势之一,我们不仅可以通过使用作用于不同靶点的药物来减少病毒耐药性的产生和单一用药所需剂量带来的不良反应,还可以根据患者病情轻重,制定个体化的治疗方案,尤其是对于重症流感患者,应格外重视宿主免疫调节治疗71。同时,由于目前的研究大多针对轻症流感患者,而导致流感患者死亡的原因往往是重症流感感染,因此我们还应在重症流感患者中开展更多的临床试验,以获得有效的治疗方法,降低重症流感患者的病死率72

引用本文:

宋融融, 徐九洋, 刘红玉, 等. 流感抗病毒药物治疗进展[J]. 中华医学杂志, 2023, 103(4): 293-299. DOI: 10.3760/cma.j.cn112137-20220602-01230.

利益冲突
利益冲突:

所有作者均声明不存在利益冲突

参考文献
[1]
IulianoAD, RoguskiKM, ChangHH, et al. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study[J]. Lancet, 2018, 391(10127):1285-1300. DOI: 10.1016/S0140-6736(17)33293-2.
[2]
LiL, LiuY, WuP, et al. Influenza-associated excess respiratory mortality in China, 2010-15: a population-based study[J]. Lancet Public Health. 2019,4(9):e473-e481. DOI: 10.1016/S2468-2667(19)30163-X.
[3]
ParkJE, RyuY. Transmissibility and severity of influenza virus by subtype[J]. Infect Genet Evol, 2018, 65:288-292. DOI: 10.1016/j.meegid.2018.08.007.
[4]
国家免疫规划技术工作组流感疫苗工作组. 中国流感疫苗预防接种技术指南(2021—2022) [J]. 中华医学杂志, 2021, 101(40): 3287-3312. DOI: 10.3760/cma.j.cn112137-20210913-02084.
[5]
中华人民共和国国家卫生健康委员会, 国家中医药管理局. 流行性感冒诊疗方案(2020年版) [J]. 中华临床感染病杂志, 2020, 13(6):401-405, 411. DOI: 10.3760/cma.j.issn.1674-2397.2020.06.001.
[6]
SarkerA, GuZ, MaoL, et al. Influenza-existing drugs and treatment prospects[J]. Eur J Med Chem, 2022, 232:114189. DOI: 10.1016/j.ejmech.2022.114189.
[7]
FieldsBN, KnipeDM, HowleyPM. Fields virology [M]. 6th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins, 2013.
[8]
YamashitaM. Laninamivir and its prodrug, CS-8958: long-acting neuraminidase inhibitors for the treatment of influenza[J]. Antivir Chem Chemother, 2010, 21(2):71-84. DOI: 10.3851/IMP1688.
[9]
ŚwierczyńskaM, Mirowska-GuzelDM, PindelskaE. Antiviral drugs in influenza[J]. Int J Environ Res Public Health, 2022, 19(5)DOI: 10.3390/ijerph19053018.
[10]
WatanabeA, ChangSC, KimMJ, et al. Long-acting neuraminidase inhibitor laninamivir octanoate versus oseltamivir for treatment of influenza: adouble-blind, randomized, noninferiority clinical trial[J]. Clin Infect Dis, 2010, 51(10):1167-1175. DOI: 10.1086/656802.
[11]
KashiwagiS, WatanabeA, IkematsuH, et al. Long-acting neuraminidase inhibitor laninamivir octanoate as post-exposure prophylaxis for influenza[J]. Clin Infect Dis, 2016, 63(3):330-337. DOI: 10.1093/cid/ciw255.
[12]
BeigelJH, HaydenFG. Influenza therapeutics in clinical practice-challenges and recent advances[J]. Cold Spring Harb Perspect Med, 2021, 11(4)DOI: 10.1101/cshperspect.a038463.
[13]
OmotoS, SperanziniV, HashimotoT, et al. Characterization of influenza virus variants induced by treatment with the endonuclease inhibitor baloxavir marboxil[J]. Sci Rep, 2018, 8(1):9633. DOI: 10.1038/s41598-018-27890-4.
[14]
TakashitaE, MoritaH, OgawaR, et al. Susceptibility of influenza viruses to the novel cap-dependent endonuclease inhibitor baloxavir marboxil[J]. Front Microbiol, 2018, 9:3026. DOI: 10.3389/fmicb.2018.03026.
[15]
LiuY, RetoutS, DuvalV, et al. Pharmacokinetics, safety, and simulated efficacy of an influenza treatment, baloxavir marboxil, in Chinese individuals[J]. Clin Transl Sci, 2022, 15(5):1196-1203. DOI: 10.1111/cts.13237.
[16]
HaydenFG, SugayaN, HirotsuN, et al. Baloxavir marboxil for uncomplicated influenza in adults and adolescents[J]. N Engl J Med, 2018, 379(10):913-923. DOI: 10.1056/NEJMoa1716197.
[17]
IsonMG, PortsmouthS, YoshidaY, et al. Early treatment with baloxavir marboxil in high-risk adolescent and adult outpatients with uncomplicated influenza (CAPSTONE-2): a randomised, placebo-controlled, phase 3 trial[J]. Lancet Infect Dis, 2020, 20(10):1204-1214. DOI: 10.1016/S1473-3099(20)30004-9.
[18]
BakerJ, BlockSL, MatharuB, et al. Baloxavir marboxil single-dose treatment in influenza-infected children: a randomized, double-blind, active controlled phase 3 safety and efficacy trial (miniSTONE-2)[J]. Pediatr Infect Dis J, 2020, 39(8):700-705. DOI: 10.1097/INF.0000000000002747.
[19]
IkematsuH, HaydenFG, KawaguchiK, et al. Baloxavir marboxil for prophylaxis against influenza in household contacts[J]. N Engl J Med, 2020, 383(4):309-320. DOI: 10.1056/NEJMoa1915341.
[20]
UeharaT, HaydenFG, KawaguchiK, et al. Treatment-emergent influenza variant viruses with reduced baloxavir susceptibility: impact on clinical and virologic outcomes in uncomplicated influenza[J]. J Infect Dis, 2020, 221(3):346-355. DOI: 10.1093/infdis/jiz244.
[21]
TakashitaE, AbeT, MoritaH, et al. Influenza A(H1N1)pdm09 virus exhibiting reduced susceptibility to baloxavir due to a PA E23K substitution detected from a child without baloxavir treatment[J]. Antiviral Res, 2020, 180:104828. DOI: 10.1016/j.antiviral.2020.104828.
[22]
FukaoK, NoshiT, YamamotoA, et al. Combination treatment with the cap-dependent endonuclease inhibitor baloxavir marboxil and a neuraminidase inhibitor in a mouse model of influenza A virus infection[J]. J Antimicrob Chemother, 2019, 74(3):654-662. DOI: 10.1093/jac/dky462.
[23]
ParkJH, KimB, AntiguaK, et al. Baloxavir-oseltamivir combination therapy inhibits the emergence of resistant substitutions in influenza A virus PA gene in a mouse model[J]. Antiviral Res, 2021, 193:105126. DOI: 10.1016/j.antiviral.2021.105126.
[24]
KumarD, IsonMG, MiraJP, et al. Combining baloxavir marboxil with standard-of-care neuraminidase inhibitor in patients hospitalised with severe influenza (FLAGSTONE): a randomised, parallel-group, double-blind, placebo-controlled, superiority trial[J]. Lancet Infect Dis, 2022, 22(5):718-730. DOI: 10.1016/S1473-3099(21)00469-2.
[25]
YuanS, ChuH, SinghK, et al. A novel small-molecule inhibitor of influenza a virus acts by suppressing PA endonuclease activity of the viral polymerase[J]. Sci Rep, 2016, 6:22880. DOI: 10.1038/srep22880.
[26]
JonesJC, MaratheBM, LernerC, et al. A novel endonuclease inhibitor exhibits broad-spectrum anti-influenza virus activity in vitro[J]. Antimicrob Agents Chemother, 2016, 60(9):5504-5514. DOI: 10.1128/AAC.00888-16.
[27]
JonesJC, MaratheBM, VogelP, et al. The PA endonuclease inhibitor RO-7 protects mice from lethal challenge with influenza A or B viruses[J]. Antimicrob Agents Chemother, 2017, 61(5)DOI: 10.1128/AAC.02460-16.
[28]
AlQahtaniM, KumarN, AljawderD, et al. Randomized controlled trial of favipiravir, hydroxychloroquine, and standard care in patients with mild/moderate COVID-19 disease[J]. Sci Rep, 2022, 12(1):4925. DOI: 10.1038/s41598-022-08794-w.
[29]
FurutaY, TakahashiK, FukudaY, et al. In vitro and in vivo activities of anti-influenza virus compound T-705[J]. Antimicrob Agents Chemother, 2002, 46(4):977-981. DOI: 10.1128/AAC.46.4.977-981.2002.
[30]
KisoM, TakahashiK, Sakai-TagawaY, et al. T-705 (favipiravir) activity against lethal H5N1 influenza A viruses[J]. Proc Natl Acad Sci U S A, 2010, 107(2):882-887. DOI: 10.1073/pnas.0909603107.
[31]
WangY, FanG, SalamA, et al. Comparative effectiveness of combined favipiravir and oseltamivir therapy versus oseltamivir monotherapy in critically ill patients with influenza virus infection[J]. J Infect Dis, 2020, 221(10):1688-1698. DOI: 10.1093/infdis/jiz656.
[32]
GoldhillDH, Te VelthuisA, FletcherRA, et al. The mechanism of resistance to favipiravir in influenza[J]. Proc Natl Acad Sci U S A, 2018, 115(45):11613-11618. DOI: 10.1073/pnas.1811345115.
[33]
SmeeDF, BarnardDL, JonesSM. Activities of JNJ63623872 and oseltamivir against influenza A H1N1pdm and H3N2 virus infections in mice[J]. Antiviral Res, 2016, 136:45-50. DOI: 10.1016/j.antiviral.2016.10.009.
[34]
ClarkMP, LedeboerMW, DaviesI, et al. Discovery of a novel, first-in-class, orally bioavailable azaindole inhibitor (VX-787) of influenza PB2[J]. J Med Chem, 2014, 57(15):6668-6678. DOI: 10.1021/jm5007275.
[35]
FinbergRW, LannoR, AndersonD, et al. Phase 2b study of pimodivir (JNJ-63623872) as monotherapy or in combination with oseltamivir for treatment of acute uncomplicated seasonal influenza A: TOPAZ trial[J]. J Infect Dis, 2019, 219(7):1026-1034. DOI: 10.1093/infdis/jiy547.
[36]
A study to evaluate the efficacy and safety of pimodivir in combination with the standard-of-care treatment in adolescent, adult, and elderly non-hospitalized participants with influenza a infection who are at risk of developing complications [EB/OL].[2022-12-01].https://clinicaltrials.gov/ct2/show/results/nct03381196?Cond=pimodivir&draw=2&rank=6&view=results.
[37]
PatelMC, ChesnokovA, JonesJ, et al. Susceptibility of widely diverse influenza a viruses to PB2 polymerase inhibitor pimodivir[J]. Antiviral Res, 2021, 188:105035. DOI: 10.1016/j.antiviral.2021.105035.
[38]
HuY, LiH, WuM, et al. Single and multiple dose pharmacokinetics and safety of ZSP1273, an RNA polymerase PB2 protein inhibitor of the influenza A virus: a phase 1 double-blind study in healthy subjects[J]. Expert Opin Investig Drugs, 2021, 30(11):1159-1167. DOI: 10.1080/13543784.2021.1994944.
[39]
ArranzR, ColomaR, ChichónFJ, et al. The structure of native influenza virion ribonucleoproteins[J]. Science, 2012, 338(6114):1634-1637. DOI: 10.1126/science.1228172.
[40]
WhiteKM, AbreuP, WangH, et al. Broad spectrum inhibitor of influenza A and B viruses targeting the viral nucleoprotein[J]. ACS Infect Dis, 2018, 4(2):146-157. DOI: 10.1021/acsinfecdis.7b00120.
[41]
KakisakaM, SasakiY, YamadaK, et al. A novel antiviral target structure involved in the RNA binding, dimerization, and nuclear export functions of the influenza A virus nucleoprotein[J]. PLoS Pathog, 2015, 11(7):e1005062. DOI: 10.1371/journal.ppat.1005062.
[42]
KaoRY, YangD, LauLS, et al. Identification of influenza A nucleoprotein as an antiviral target[J]. Nat Biotechnol, 2010, 28(6):600-605. DOI: 10.1038/nbt.1638.
[43]
GerritzSW, CianciC, KimS, et al. Inhibition of influenza virus replication via small molecules that induce the formation of higher-order nucleoprotein oligomers[J]. Proc Natl Acad Sci USA, 2011, 108(37):15366-15371. DOI: 10.1073/pnas.1107906108.
[44]
LejalN, TarusB, BouguyonE, et al. Structure-based discovery of the novel antiviral properties of naproxen against the nucleoprotein of influenza A virus[J]. Antimicrob Agents Chemother, 2013, 57(5):2231-2242. DOI: 10.1128/AAC.02335-12.
[45]
TarusB, BertrandH, ZeddaG, et al. Structure-based design of novel naproxen derivatives targeting monomeric nucleoprotein of Influenza A virus[J]. J Biomol Struct Dyn, 2015, 33(9):1899-1912. DOI: 10.1080/07391102.2014.979230.
[46]
ZhengW, FanW, ZhangS, et al. Naproxen exhibits broad anti-influenza virus activity in mice by impeding viral nucleoprotein nuclear export[J]. Cell Rep, 2019, 27(6):1875-1885.e5. DOI: 10.1016/j.celrep.2019.04.053.
[47]
HungI, ToK, ChanJ, et al. Efficacy of clarithromycin-naproxen-oseltamivir combination in the treatment of patients hospitalized for influenza A(H3N2) infection: an open-label randomized, controlled, phase Ⅱb/Ⅲ trial[J]. Chest, 2017, 151(5):1069-1080. DOI: 10.1016/j.chest.2016.11.012.
[48]
LeeCW, TaiYL, HuangLM, et al. Efficacy of clarithromycin-naproxen-oseltamivir combination therapy versus oseltamivir alone in hospitalized pediatric influenza patients[J]. J Microbiol Immunol Infect, 2021, 54(5):876-884. DOI: 10.1016/j.jmii.2020.08.017.
[49]
YangF, PangB, LaiKK, et al. Discovery of a novel specific inhibitor targeting influenza a virus nucleoprotein with pleiotropic inhibitory effects on various steps of the viral life cycle[J]. J Virol, 2021, 95(9)DOI: 10.1128/JVI.01432-20.
[50]
RossignolJF, La FraziaS, ChiappaL, et al. Thiazolides, a new class of anti-influenza molecules targeting viral hemagglutinin at the post-translational level[J]. J Biol Chem, 2009, 284(43):29798-29808. DOI: 10.1074/jbc.M109.029470.
[51]
MifsudEJ, TilmanisD, OhDY, et al. Prophylaxis of ferrets with nitazoxanide and oseltamivir combinations is more effective at reducing the impact of influenza a virus infection compared to oseltamivir monotherapy[J]. Antiviral Res, 2020, 176:104751. DOI: 10.1016/j.antiviral.2020.104751.
[52]
HaffizullaJ, HartmanA, HoppersM, et al. Effect of nitazoxanide in adults and adolescents with acute uncomplicated influenza: a double-blind, randomised, placebo-controlled, phase 2b/3 trial[J]. Lancet Infect Dis, 2014, 14(7):609-618. DOI: 10.1016/S1473-3099(14)70717-0.
[53]
Gamiño-ArroyoAE, GuerreroML, McCarthyS, et al. Efficacy and safety of nitazoxanide in addition to standard of care for the treatment of severe acute respiratory illness[J]. Clin Infect Dis, 2019, 69(11):1903-1911. DOI: 10.1093/cid/ciz100.
[54]
ZhaoL, YanY, DaiQ, et al. Development of novel anti-influenza thiazolides with relatively broad-spectrum antiviral potentials[J]. Antimicrob Agents Chemother, 2020, 64(7)DOI: 10.1128/AAC.00222-20.
[55]
HanA, CzajkowskiL, RosasLA, et al. Safety and efficacy of CR6261 in an influenza A H1N1 healthy human challenge model[J]. Clin Infect Dis, 2021, 73(11):e4260-e4268. DOI: 10.1093/cid/ciaa1725.
[56]
HershbergerE, SloanS, NarayanK, et al. Safety and efficacy of monoclonal antibody VIS410 in adults with uncomplicated influenza A infection: results from a randomized, double-blind, phase-2, placebo-controlled study[J]. EBioMedicine, 2019, 40:574-582. DOI: 10.1016/j.ebiom.2018.12.051.
[57]
LimJJ, DarS, VenterD, et al. A phase 2 randomized, double-blind, placebo-controlled trial of the monoclonal antibody MHAA4549A in patients with acute uncomplicated influenza a infection[J]. Open Forum Infect Dis, 2022, 9(2):ofab630. DOI: 10.1093/ofid/ofab630.
[58]
BeigelJH, AgaE, Elie-TurenneMC, et al. Anti-influenza immune plasma for the treatment of patients with severe influenza A: a randomised, double-blind, phase 3 trial[J]. Lancet Respir Med, 2019, 7(11):941-950. DOI: 10.1016/S2213-2600(19)30199-7.
[59]
DaveyRT, Fernández-CruzE, MarkowitzN, et al. Anti-influenza hyperimmune intravenous immunoglobulin for adults with influenza A or B infection (FLU-IVIG): a double-blind, randomised, placebo-controlled trial[J]. Lancet Respir Med, 2019, 7(11):951-963. DOI: 10.1016/S2213-2600(19)30253-X.
[60]
OliverME, HinksT. Azithromycin in viral infections[J]. Rev Med Virol, 2021, 31(2):e2163. DOI: 10.1002/rmv.2163.
[61]
DuX, ZuoX, MengF, et al. Direct inhibitory effect on viral entry of influenza A and SARS-CoV-2 viruses by azithromycin[J]. Cell Prolif, 2021, 54(1):e12953. DOI: 10.1111/cpr.12953.
[62]
LeeN, WongCK, ChanM, et al. Anti-inflammatory effects of adjunctive macrolide treatment in adults hospitalized with influenza: a randomized controlled trial[J]. Antiviral Res, 2017, 144:48-56. DOI: 10.1016/j.antiviral.2017.05.008.
[63]
IshaquiAA, KhanAH, SulaimanS, et al. Assessment of efficacy of Oseltamivir-Azithromycin combination therapy in prevention of Influenza-A (H1N1)pdm09 infection complications and rapidity of symptoms relief[J]. Expert Rev Respir Med, 2020, 14(5):533-541. DOI: 10.1080/17476348.2020.1730180.
[64]
ArikataM, ItohY, ShichinoheS, et al. Efficacy of clarithromycin against H5N1 and H7N9 avian influenza a virus infection in cynomolgus monkeys[J]. Antiviral Res, 2019, 171:104591. DOI: 10.1016/j.antiviral.2019.104591.
[65]
MannickJB, MorrisM, HockeyHP, et al. TORC1 inhibition enhances immune function and reduces infections in the elderly[J]. Sci Transl Med, 2018, 10(449)DOI: 10.1126/scitranslmed.aaq1564.
[66]
ZengQ, WangJ, ZhangX, et al. Successful combinatorial therapy of sirolimus and neuraminidase inhibitors in a patient with highly pathogenic avian influenza A (H5N6) virus: a case report[J]. Ann Transl Med, 2022, 10(5):265. DOI: 10.21037/atm-22-704.
[67]
ChenJ, HuC, ChenL, et al. Clinical study of mesenchymal stem cell treatment for acute respiratory distress syndrome induced by epidemic influenza A (H7N9) infection: a hint for COVID-19 treatment[J]. Engineering (Beijing), 2020, 6(10):1153-1161. DOI: 10.1016/j.eng.2020.02.006.
[68]
BesednovaN, ZaporozhetsT, KuznetsovaT, et al. Metabolites of seaweeds as potential agents for the prevention and therapy of influenza infection[J]. Mar Drugs, 2019, 17(6)DOI: 10.3390/md17060373.
[69]
MehrbodP, HudyD, ShyntumD, et al. Quercetin as a natural therapeutic candidate for the treatment of influenza virus[J]. Biomolecules, 2020, 11(1)DOI: 10.3390/biom11010010.
[70]
LinHY, ZengYT, LinCJ, et al. Partial carbonization of quercetin boosts the antiviral activity against H1N1 influenza A virus[J]. J Colloid Interface Sci, 2022, 622:481-493. DOI: 10.1016/j.jcis.2022.04.124.
[71]
CaoB, HaydenFG. Antiviral monotherapy for hospitalised patients with COVID-19 is not enough[J]. Lancet, 2020, 396(10259):1310-1311. DOI: 10.1016/S0140-6736(20)32078-X.
[72]
XuJ, YuJ, YangL, et al. Influenza virus in community-acquired pneumonia: current understanding and knowledge gaps[J]. Semin Respir Crit Care Med, 2020, 41(4):555-567. DOI: 10.1055/s-0040-1710584.
[73]
HirotsuN, SaishoY, HasegawaT, et al. Clinical and virologic effects of four neuraminidase inhibitors in influenza A virus-infected children (aged 4-12 years): an open-label, randomized study in Japan[J]. Expert Rev Anti Infect Ther, 2018, 16(2):173-182. DOI: 10.1080/14787210.2018.1421945.
[74]
NakanoT, IshiwadaN, SumitaniT, et al. Inhaled laninamivir octanoate as prophylaxis for influenza in children[J]. Pediatrics, 2016, 138(6)DOI: 10.1542/peds.2016-0109.
[75]
TrevejoJM, AsmalM, VingerhoetsJ, et al. Pimodivir treatment in adult volunteers experimentally inoculated with live influenza virus: a Phase Ⅱa, randomized, double-blind, placebo-controlled study[J]. Antivir Ther, 2018, 23(4):335-344. DOI: 10.3851/IMP3212.
[76]
O′NeilB, IsonMG, Hallouin-BernardMC, et al. A phase 2 study of Pimodivir (JNJ-63623872) in combination with oseltamivir in elderly and nonelderly adults hospitalized with influenza a infection: OPAL study[J]. J Infect Dis, 2022, 226(1):109-118. DOI: 10.1093/infdis/jiaa376.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词