综述
益生菌防治新生儿坏死性小肠结肠炎机制研究进展
中华小儿外科杂志, 2021,42(2) : 176-180. DOI: 10.3760/cma.j.cn421158-20190930-00572
摘要

新生儿坏死性小肠结肠炎(necrotizing enterocolitis, NEC)是导致新生儿尤其是早产儿和低出生体重儿死亡的病因之一。NEC的发生与新生儿肠道菌群定植延迟和结构紊乱密切相关。近些年大量研究认为,益生菌可通过调节肠道菌群结构,增强肠道屏障功能,减少病原菌定植和迁移,同时促进新生儿肠道免疫细胞发育和功能成熟,进而降低NEC的发病率和死亡率。本文现就益生菌防治NEC的作用机制研究进展做一综述。

引用本文: 赵修浩, 周锦, 吕志宝. 益生菌防治新生儿坏死性小肠结肠炎机制研究进展 [J] . 中华小儿外科杂志, 2021, 42(2) : 176-180. DOI: 10.3760/cma.j.cn421158-20190930-00572.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

版权归中华医学会所有。

未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。

新生儿坏死性小肠结肠炎(necrotizing enterocolitis, NEC)是新生儿期特有的一种累及肠道的炎症坏死性疾病,成活新生儿发生率约在1‰~3‰。NEC的发生与早产、肠道缺血缺氧、肠道菌群失调、免疫应答异常等多种因素相关[1]。NEC患儿肠道菌群失调主要表现为,菌群多样性降低、稳定性差,专性厌氧菌和益生菌如梭状芽孢杆菌(Clostridium)、拟杆菌(Bacteroides)、双歧杆菌(Bifidobacterium)、乳酸菌(Lactobacillus)等定植延迟,变形菌门(Proteobactria)细菌数量增多,厚壁菌门(Firmicutes)和拟杆菌门(Bacteroidetes)细菌数量减少[2]。益生菌是一类对宿主健康有益的活微生物,在临床上广泛应用于肠道炎症性疾病的防治[3]

早在1999年,Hoyos[4]首次报道,在新生儿应用益生菌(嗜酸乳酸菌联合婴儿双歧杆菌)可以降低NEC的发病率及死亡率。至今,约40项随机对照研究和10余项回顾性研究报道益生菌防治NEC的疗效,总体认为益生菌是安全的,且可降低NEC的发病率和死亡率[5,6,7]。研究较多的益生菌有乳酸菌[鼠李糖乳酸菌(Lactobacillus Rhamnosus)、罗伊氏乳酸菌(Lactobacillus Reuteri)]、双歧杆菌[婴儿双歧杆菌(Bifidobacteriuminfantis)、短双歧杆菌(Bifidobacterium Breve)、长双歧杆菌(Bifidobacterium Longum)、两歧双歧杆菌(Bifidobacterium Bifidum)]及丁酸梭菌(Clostridium Butyricum)等,但关于益生菌的成分、剂量以及给药时间尚没有统一建议。同时,一项大样本Ⅲ期临床随机对照研究显示,早产儿应用短双歧杆菌是安全的,但不能降低NEC的发病率[8]。且有研究显示,应用益生菌可能增加新生儿感染的发生率[9]。不同研究结果的差异可能与益生菌成分或生产工艺不同有关。目前,益生菌防治NEC的机制尚不明确,可能包括以下三个方面:①调节肠道菌群结构,抑制病原菌生长;②促进肠道屏障结构和功能成熟;③调节肠道免疫功能,抑制炎症反应。本文就益生菌防治NEC的作用机制作一综述。

一、调节肠道菌群结构,抑制病原菌生长

新生儿肠道菌群定植受多种因素影响,是否早产、分娩方式、喂养方式、应用抗生素或抑酸药,以及NICU环境均可影响肠道菌群结构[1,10]

新生儿早期应用益生菌有助于肠道菌群定植,益生菌定植效果与益生菌剂量及成分相关[11]。早期研究认为,双歧杆菌可通过抑制大鼠肠道细菌移位,降低血浆内毒素水平,同时减少小肠组织中磷脂酶A2(phospholipase A2, PLA2)表达,来减轻NEC症状[12]。连续应用鼠李糖乳酸菌,可明显增加肠道乳酸菌含量,减少肠腔及黏膜的病原菌定植,同时抑制病原菌透过肠道屏障向肠外器官移位[13,14]。早产猪出生后应用益生菌混合物(4种乳酸菌和1种双歧杆菌),可促进益生菌如乳酸菌的定植,减少病原菌如产气荚膜梭菌的定植,增强肠道抵抗配方奶喂养致损伤作用,减轻NEC症状[15]。近年的研究证实,联合应用多种双歧杆菌(短双歧杆菌、长双歧杆菌、婴儿双歧杆菌)后,低出生体重早产儿肠道双歧杆菌含量明显增加,同时产气荚膜梭菌及肠杆菌减少,且联合应用效果优于单一应用[16]。而另一项研究认为,早产大鼠单一喂食婴儿双歧杆菌后,并不能明显改变肠道菌群结构[17]。在联合母乳喂养后,婴儿双歧杆菌则可明显促进双歧杆菌在肠道定植,减少肠杆菌科细菌数量,降低早产儿发生NEC风险[18]

二、促进肠道屏障结构和功能成熟

成熟的肠道黏膜屏障是一个复杂的体系,由表面的黏液层、局部细胞分泌的胃酸、抗菌肽、成熟的肠道上皮细胞以及细胞间的紧密连接等构成。早产儿,特别是极低出生体重儿,肠道尚未发育成熟,通透性高,屏障功能较差,在配方奶喂养或病原菌感染等因素作用下,屏障功能将进一步遭受损伤。研究表明,鼠李糖乳酸菌可调节肠上皮细胞增殖、分化、迁移相关基因表达,同时诱导抗凋亡基因表达,维持肠上皮细胞稳定;并可活化蛋白激酶C(protein kinase C, PKC)及丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)通路,促进肠上皮细胞紧密连接蛋白Claudin-1、Claudin-3及闭合小环蛋白(zonula occludens-1,ZO-1)结构稳定,降低肠屏障通透性;同时促进潘氏细胞分化和防御素分泌,调节屏障功能[19,20,21]。罗伊氏乳酸菌亦可促进ZO-1结构稳定,减轻产肠毒素型大肠杆菌对肠上皮细胞屏障结构的损伤[22]。嗜酸乳酸菌则通过增加肠道黏膜层和肌层厚度,维持结构完整,修复NEC肠壁损伤[23]。双歧杆菌一方面可促进环氧酶-2(cyclooxygenase-2, COX-2)表达,增加前列腺素-E2(prostaglandin E2, PGE2)产生,减少肠上皮细胞凋亡[24];另一方面,可通过减少黏液素-3、三叶肽因子-3含量,抑制潘氏细胞合成抗菌肽,维持紧密连接和黏着连接蛋白结构稳定,改善肠道屏障结构及功能,降低新生大鼠NEC发生率及死亡率[25]。婴儿双歧杆菌和短双歧杆菌亦可维持肠上皮细胞间紧密连接蛋白Claudins、闭合蛋白(Occludin)及ZO-1结构稳定,降低肠道屏障通透性,减轻NEC症状[26,27]

三、调节肠道免疫功能,抑制炎症反应

新生儿肠道免疫功能发育尚未成熟,肠道菌群异常定植尤其是潜在致病菌定植可引起肠道免疫反应失调,引发过度炎症反应,甚至导致NEC发生。益生菌可通过调节肠道菌群结构,促进肠道免疫细胞发育成熟,从而防治多种儿童肠道疾病[3]

肠道免疫系统中,肠上皮细胞、杯状细胞、潘氏细胞等固有免疫细胞组成肠黏膜屏障,在固有免疫应答中发挥重要作用。同时,肠上皮细胞可通过不同模式识别受体(pattern recognition receptors, PRRs)识别病原菌或内源性抗原,其中Toll样受体(toll-like receptors, TLRs)及NOD样受体(nucleotide oligomerization domain-like receptors, NLRs)的活化在NEC的发生中发挥重要作用。肠道益生菌和病原菌病原相关分子模式(microbial associated molecular patterns, MAMPs)均可激活TLRs,共同维持TLRs表达平衡,调节下游NF-κB转录、炎症因子表达及细胞凋亡[1]。革兰氏阴性菌成分脂多糖(lipopolysaccharides, LPS)可激活TLR4,后者经不同途径活化NF-κB,引起炎症因子过度释放和肠道损伤,导致NEC发生。益生菌则可间接抑制TLR4表达及NF-κB活化,减轻炎症反应[28]。罗伊氏乳酸菌通过抑制TLR4/NF-κB通路活化,减少炎症因子IL-6、TNF-α和MIP-2释放,增加抗炎因子IL-10及IL-10R2表达,减轻产肠毒素型大肠杆菌对肠上皮细胞的损伤,亦可通过调节c-Jun或MAPK通路减少炎症因子释放,减轻NEC炎症反应[29,30]。最近的研究认为,乳酸菌可诱导去泛素化酶A20、细胞因子信号转导抑制因子SOCS-1和-3,以及IL-1受体相关激酶-3(IRK-3)表达,抑制NF-κB转录和JAK/STAT通路信号转导,减少炎症因子释放[31]。无毒性沙门氏菌则通过阻止IκB-α降解,抑制NF-κB活化,减少炎症因子TNF、IL-8释放[32]。TLR2作为可识别革兰氏阳性菌成分的受体,其在益生菌减轻NEC中的作用机制并不明确。研究显示,婴儿双歧杆菌、短双歧杆菌及两歧双歧杆菌均可促进TLR2表达,抑制TLR4活化,减少IL-6、IL-8、IL-23、TNF-α等炎症因子释放,从而减轻NEC早产大鼠肠道炎症[17,27,33]。而有研究团队应用胎儿小肠上皮细胞(H4)研究显示,婴儿双歧杆菌和嗜酸乳酸杆菌均可抑制H4细胞TLR2及TLR4表达,进而一方面抑制NF-κB通路活化,上调炎症负调节因子单Ig区IL-1相关受体(single Ig IL-1-related receptor,SIGIRR)和Toll相互作用蛋白(Toll interacting protein,Tollip)表达,另一方面抑制白细胞介素-1受体相关激酶-2(interleukin-1 receptor-associated kinase 2, IRAK-2)表达,减少激活蛋白-1(activator-protein 1,AP-1)磷酸化,促进肠道固有免疫应答成熟,并且婴儿双歧杆菌效果优于嗜酸乳酸杆菌[34]。但是该团队另一研究结果显示,脆弱拟杆菌(Bacteroides Fragilis)多聚糖A则通过活化TLR2,抑制IL-1β诱导的IL8释放,减轻NEC炎症反应[35]。细菌DNA成分是TLR9的特异性配体,CpG-DNA可通过识别并活化TLR9,调节TLRs负调节因子IRAK-M在高尔基体的分布,抑制TLR4信号转导,减少肠上皮细胞凋亡及细菌移位[36]。研究证实,鼠李糖乳酸菌CpG-DNA可通过激活TLR9,抑制TLR4通路活化,减少炎症因子释放,减轻NEC症状,同时不伴有相关的副作用[37]

合理的肠道菌群定植有助于新生儿肠道免疫功能成熟。淋巴细胞在肠道黏膜对菌群定植的适应过程中发挥重要作用,其比例失调导致过度炎症反应是NEC发生的重要原因之一[38]。NEC早产儿小肠T细胞比例失调,表现为调节性T细胞(regulatory T cells, Treg)比例明显降低[39]。这可能与菌群失调导致TLR4过度活化,诱导肠组织中初始T细胞分化为Th17细胞,减少Treg细胞分化有关[38]。益生菌复合物VSL#3(4种乳酸菌、3种双歧杆菌、1种链球菌)可刺激血液和肠道中树突状细胞释放抗炎因子IL-10,减少促炎因子IL-12及IFN-γ产生,减轻LPS所致炎症反应[40]。最近研究认为,罗伊氏乳酸菌通过激活肠上皮细胞和树突状细胞表面TLR2受体,促进初始T细胞向Treg细胞分化,增加小肠组织中Treg细胞比例,同时减少初始T细胞向Th1及Th17细胞分化,从而减少IL-1β及IFN-γ释放,减轻NEC炎症反应[41]

综上所述,益生菌可通过不同作用方式调节肠道菌群结构,抑制病原菌定植扩散,改善肠道屏障功能,促进肠道免疫功能成熟,减轻新生儿肠道炎症反应,进而在NEC发病过程中发挥保护作用。然而,对于早产儿,由于其肠道屏障功能发育不成熟,早期应用益生菌可能增加肠道细菌移位至血循环的风险,导致菌血症[9,42]。因此,针对目前疗效显著的益生菌,一方面应进一步明确益生菌种类、剂型、生产工艺及应用原则,另一方面应深入研究其有效成分,以降低因应用活菌导致的并发症。

利益冲突
利益冲突

所有作者均声明不存在利益冲突

参考文献
[1]
DenningNL, PrinceJM.Neonatal intestinal dysbiosis in necrotizing enterocolitis[J].Mol Med201824: 4.DOI: 10.1186/s10020-018-0002-0.
[2]
PammiM, CopeJ, TarrPIet al. Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis:a systematic review and meta-analysis[J].Microbiome20175(1): 31.DOI: 10.1186/s40168-017-0248-8.
[3]
Plaza-DíazJ, Ruiz-OjedaFJ, Gil-CamposMet al.Immune-mediated mechanisms of action of probiotics and synbiotics in treating pediatric intestinal diseases[J].Nutrients201810(1): 42. DOI: 10.3390/nu10010042.
[4]
HoyosAB.Reduced incidence of necrotizing enterocolitis associated with enteral administration of Lactobacillus acidophilus and Bifidobacterium infantis to neonates in an intensive care unit[J].Int J Infect Dis19993(4): 197-202.DOI: 10.1016/S1201-9712(99)90024-3.
[5]
PatelRM, UnderwoodMA.Probiotics and necrotizing enterocolitis[J].Semin Pediatr Surg201827(1): 39-46. DOI: 10.1053/j.sempedsurg.2017.11.008.
[6]
AlFalehK, AnabreesJ. Probiotics for prevention of necrotizing enterocolitis in preterm infants[J]. Cochrane Database Syst Rev, 2014(4): CD005496. DOI: 10.1002/14651858.CD005496.pub4.
[7]
FrostBL, ModiBP, JaksicTet al.New medical and surgical insights into neonatal necrotizing enterocolitis:a review[J].JAMA Pediatr2017171(1): 83-88.DOI: 10.1001/jamapediatrics.2016.2708.
[8]
CosteloeK, HardyP, JuszczakEet al.Bifidobacterium breve BBG-001 in very preterm infants:a randomised controlled phase 3 trial[J].Lancet2016387(10019): 649-660.DOI: 10.1016/S0140-6736(15)01027-2.
[9]
DaniC, CovielloCC, CorsiniIIet al.Lactobacillus Sepsis and probiotic therapy in newborns:two new cases and literature review[J].AJP Rep20166(1): e25-e29.DOI: 10.1055/s-0035-1566312.
[10]
宋朝敏王红吴斌. 益生菌与新生儿坏死性小肠结肠炎[J]. 中国微生态学杂志200517(6): 479-480. DOI: 10.3969/j.issn.1005-376X.2005.06.042.
SongCM, WangH, WuB. Probiotics and necrotizing enterocolitis [J]. Chin J Microecol200517(6): 479-480. DOI: 10.3969/j.issn.1005-376X.2005.06.042.
[11]
UnderwoodMA, KalanetraKM, BokulichNAet al.A comparison of two probiotic strains of bifidobacteria in premature infants[J].J Pediatr2013163(6): 1585-1591.e9.DOI: 10.1016/j.jpeds.2013.07.017.
[12]
CaplanMS, Miller-CatchpoleR, KaupSet al. Bifidobacterial supplementation reduces the incidence of necrotizing enterocolitis in a neonatal rat model[J]. Gastroenterology1999117(3): 577-583. DOI: 10.1016/S0016-5085(99)70450-6.
[13]
ShermanMP, BennettSH, HwangFFYet al.Neonatal small bowel epithelia:enhancing anti-bacterial defense with lactoferrin and Lactobacillus GG[J]. Biometals200417(3): 285-289. DOI: 10.1023/b:biom.0000027706.51112.62.
[14]
McVayMR, BonetiC, HabibCMet al.Formula fortified with live probiotic culture reduces pulmonary and gastrointestinal bacterial colonization and translocation in a newborn animal model[J].J Pediatr Surg200843(1): 25-29.DOI: 10.1016/j.jpedsurg.2007.09.013.
[15]
SiggersRH, SiggersJ, BoyeMet al.Early administration of probiotics alters bacterial colonization and limits diet-induced gut dysfunction and severity of necrotizing enterocolitis in preterm pigs[J].J Nutr2008138(8): 1437-1444.DOI: 10.1093/jn/138.8.1437.
[16]
IshizekiS, SugitaM, TakataMet al.Effect of administration of bifidobacteria on intestinal microbiota in low-birth-weight infants and transition of administered bifidobacteria:a comparison between one-species and three-species administration[J].Anaerobe201323: 38-44. DOI: 10.1016/j.anaerobe.2013.08.002.
[17]
UnderwoodMA, ArriolaJ, GerberCWet al.Bifidobacterium longum subsp.infantis in experimental necrotizing enterocolitis:alterations in inflammation,innate immune response,and the microbiota[J].Pediatr Res201476(4): 326-333.DOI: 10.1038/pr.2014.102.
[18]
UnderwoodMA, GermanJB, LebrillaCBet al.Bifidobacterium longum subspecies infantis:champion colonizer of the infant gut[J].Pediatr Res201577(1/2): 229-235.DOI: 10.1038/pr.2014.156.
[19]
LinPW, NasrTR, BerardinelliAJet al.The probiotic Lactobacillus GG may augment intestinal host defense by regulating apoptosis and promoting cytoprotective responses in the developing murine gut[J]. Pediatr Res200864(5): 511-516. DOI: 10.1203/pdr.0b013e3181827c0f.
[20]
PatelRM, MyersLS, KurundkarARet al.Probiotic bacteria induce maturation of intestinal claudin 3 expression and barrier function[J].Am J Pathol2012180(2): 626-635.DOI: 10.1016/j.ajpath.2011.10.025.
[21]
ShaffieySA, JiaHP, KeaneTet al.Intestinal stem cell growth and differentiation on a tubular scaffold with evaluation in small and large animals[J].Regen Med201611(1): 45-61.DOI: 10.2217/rme.15.70.
[22]
WangZ, WangL, ChenZet al.In vitro evaluation of swine-derived Lactobacillus reuteri:probiotic properties and effects on intestinal porcine epithelial cells challenged with enterotoxigenic Escherichia coli K88[J]. J Microbiol Biotechnol201626(6): 1018-1025. DOI: 10.4014/jmb.1510.10089.
[23]
GonçalvesFLL, SoaresLMM, FigueiraRLet al.Evaluation of the expression of I-FABP and L-FABP in a necrotizing enterocolitis model after the use of Lactobacillus acidophilus[J].J Pediatr Surg201550(4): 543-549.DOI: 10.1016/j.jpedsurg.2014.07.007.
[24]
刘健吴斌陈兢芳双歧杆菌对新生大鼠坏死性小肠结肠炎肠损伤及肠细胞凋亡影响[J].中国微生态学杂志201022(8): 682-685,689.
LiuJ, WuB, ChenJFet al.Effects of Bifidobacterium longum on intestinal injury and cell apoptosis in neonatal rat model of necrotizing enterocolitis[J].Chin J Microecol201022(8): 682-685,689.
[25]
UnderwoodMA, KananurakA, CoursodonCFet al.Bifidobacterium bifidum in a rat model of necrotizing enterocolitis:antimicrobial peptide and protein responses[J].Pediatr Res201271(5): 546-551. DOI: 10.1038/pr.2012.11.
[26]
BergmannKR, LiuSXL, TianRLet al.Bifidobacteria stabilize claudins at tight junctions and prevent intestinal barrier dysfunction in mouse necrotizing enterocolitis[J].Am J Pathol2013182(5): 1595-1606. DOI: 10.1016/j.ajpath.2013.01.013.
[27]
SatohT, IzumiH, IwabuchiNet al.Bifidobacterium breve prevents necrotising enterocolitis by suppressing inflammatory responses in a preterm rat model[J].Benef Microbes20167(1): 75-82. DOI: 10.3920/bm2015.0035.
[28]
赵启晖李刚李梅益生菌干预对患坏死性小肠结肠炎早产儿胃肠激素、炎症介质及Toll样受体4表达水平的影响分析[J]. 标记免疫分析与临床201724(10): 1154-1158. DOI: 10.3969/j.issn.1005-376X.2005.06.042.
ZhaoQH, LiG, LiM, et al. Effect of probiotics intervention on gastrointestinal hormones, inflammatory mediators and expression of toll like receptor 4 in premature infants with necrotizing enterocolitis[J]. Labeled Immun Clin Med, 201724(10): 1154-1158. DOI: 10.3969/j.issn.1005-376X.2005.06.042.
[29]
LinYP, ThibodeauxCH, PeñaJAet al.Probiotic Lactobacillus reuteri suppress proinflammatory cytokines via c-Jun[J].Inflamm Bowel Dis200814(8): 1068-1083.DOI: 10.1002/ibd.20448.
[30]
IyerC, KostersA, SethiGet al.Probiotic Lactobacillus reuteri promotes TNF-induced apoptosis in human myeloid leukemia-derived cells by modulation of NF-κB and MAPK signalling[J].Cell Microbiol200810(7): 1442-1452.DOI: 10.1111/j.1462-5822.2008.01137.x.
[31]
SunKY, XuDH, XieCet al.Lactobacillus paracasei modulates LPS-induced inflammatory cytokine release by monocyte-macrophages via the up-regulation of negative regulators of NF-kappaB signaling in a TLR2-dependent manner[J].Cytokine201792: 1-11. DOI: 10.1016/j.cyto.2017.01.003.
[32]
NeishAS.Prokaryotic regulation of epithelial responses by inhibition of ikappa B-alpha ubiquitination[J].Science2000289(5484): 1560-1563. DOI: 10.1126/science.289.5484.1560.
[33]
GanguliK, MengD, RautavaSet al.Probiotics prevent necrotizing enterocolitis by modulating enterocyte genes that regulate innate immune-mediated inflammation[J].Am J Physiol -Gastrointest Liver Physiol2013304(2): G132-G141.DOI: 10.1152/ajpgi.00142.2012.
[34]
WuWS, WangYL, ZouJJet al.Bifidobacterium adolescentis protects against necrotizing enterocolitis and upregulates TOLLIP and SIGIRR in premature neonatal rats[J].BMC Pediatr201717(1): 1-7. DOI: 10.1186/s12887-016-0759-7.
[35]
JiangF, MengD, WengMQet al.The symbiotic bacterial surface factor polysaccharide A on Bacteroides fragilis inhibits IL-1β-induced inflammation in human fetal enterocytes via toll receptors 2 and 4[J/OL].PLoS One201712(3): e0172738.DOI: 10.1371/journal.pone.0172738.
[36]
GribarSC, SodhiCP, RichardsonWMet al.Reciprocal expression and signaling of TLR4 and TLR9 in the pathogenesis and treatment of necrotizing enterocolitis[J].J Immunol2009182(1): 636-646. DOI: 10.4049/jimmunol.182.1.636.
[37]
GoodM, SodhiCP, OzolekJAet al.Lactobacillus rhamnosus HN001 decreases the severity of necrotizing enterocolitis in neonatal mice and preterm piglets:evidence in mice for a role of TLR9[J].Am J Physiol Gastrointest Liver Physiol2014306(11): G1021-G1032. DOI: 10.1152/ajpgi.00452.2013.
[38]
EganCE, SodhiCP, GoodMet al.Toll-like receptor 4-mediated lymphocyte influx induces neonatal necrotizing enterocolitis[J].J Clin Investig2016126(2): 495-508.DOI: 10.1172/jci83356.
[39]
WeitkampJH, KoyamaT, RockMTet al.Necrotising enterocolitis is characterised by disrupted immune regulation and diminished mucosal regulatory (FOXP3)/effector (CD4,CD8) T cell ratios[J].Gut201362(1): 73-82. DOI: 10.1136/gutjnl-2011-301551.
[40]
HartAL, LammersK, BrigidiPet al.Modulation of human dendritic cell phenotype and function by probiotic bacteria[J].Gut200453(11): 1602-1609. DOI: 10.1136/gut.2003.037325.
[41]
HoangTK, HeBK, WangTet al.Protective effect of Lactobacillus reuteri DSM 17938 against experimental necrotizing enterocolitis is mediated by Toll-like receptor 2[J].Am J Physiol -Gastrointest Liver Physiol2018315(2): G231-G240.DOI: 10.1152/ajpgi.00084.2017.
[42]
BertelliC, PillonelT, TorregrossaAet al.Bifidobacterium longum bacteremia in preterm infants receiving probiotics[J].Clin Infect Dis201560(6): 924-927.DOI: 10.1093/cid/ciu946.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词