综述
髓系抑制性细胞在移植免疫中作用的研究进展
中华器官移植杂志, 2016,37(7) : 435-438. DOI: 10.3760/cma.j.issn.0254-1785.2016.07.011
引用本文: 封素娟, 蒋一航, 张小东. 髓系抑制性细胞在移植免疫中作用的研究进展 [J] . 中华器官移植杂志, 2016, 37(7) : 435-438. DOI: 10.3760/cma.j.issn.0254-1785.2016.07.011.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

版权归中华医学会所有。

未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。

髓系抑制性细胞(Myeloid-derived suppressor cells,MDSCs)是一群具有免疫调节作用的天然免疫细胞,最初在小鼠肿瘤模型和肿瘤患者中发现[1],在炎症和感染中也发挥重要作用,并可作为天然免疫细胞在器官移植负向免疫调节和移植免疫诱导中发挥重要作用。因此,本文就MDSCs在移植免疫耐受中作用的研究进展做如下综述。

一、MDSCs的来源和表型

MDSCs由造血干细胞分化而来,在生理情况下,造血干细胞先分化为共同髓系祖细胞(CMP),然后再进一步分化为髓样细胞后最终发育分化为粒细胞、单核细胞、巨噬细胞或树突状细胞(DC细胞)。而在病理情况下如肿瘤,感染,外伤,器官移植以及一些自身免疫性疾病的情况下,髓样细胞正常分化受阻而大量扩增成为具有抑制功能的异质性MDSCs[2]。因此,MDSCs缺乏像粒细胞、单核细胞、巨噬细胞或DC细胞那样特异性的表面标记物,而可能是由具有粒细胞或单核细胞形态特征的髓样细胞的表面标记物组合而成[3]。MDSCs在小鼠中被定义为表达CD11b和Gr-1的细胞,其中CD11b是b2整合素Mac-1的一个亚基,在粒细胞、单核细胞、巨噬细胞或DC细胞表面均有表达,而Gr-1主要表达于粒细胞和巨噬细胞表面。在进一步的分类中,根据细胞表面Ly6C和Ly6G的表达情况和细胞核形态可将MDSCs分为两个亚群,即单核细胞样MDSCs (M-MDSCs)和粒细胞样MDSC (G-MDSCs)。其中,M-MDSCs表达CD11bLy6GLy6Chigh,而G-MDSCs表达CD11bLy6GLy6Clow[4]。Youn等[3]的研究表明,M-MDSCs比G-MDSCs表达更高水平的F4/80, CD115和CCR2,并通过诱导型一氧(iNOS)介导的信号通路抑制CD8T细胞活性。

在人中也发现了和小鼠相对应的MDSCs及亚群,但对其表面标志也尚存在争议。通常认为人MDSCs是一群表达LinHLA-DRCD33或CD11bCD14CD33的细胞[5]。根据多个研究结果,目前人外周血中MDSCs也可主要分为两个亚群,包括表达CD11bCD14CD15的G-MDSCs和表达CD11bCD14HLA-DRlow/neg的M-MDSCs[2,5]。同时,根据细胞表面CD15表达水平的不同,还可将MDSCs进一步分类,其中CD15的MDSCs与小鼠粒细胞样Gr-1high MDSCs功能类似,而CD15的单核细胞样MDSCs可通过精氨酸酶或活性氧簇等抑制肾癌患者体内T淋巴细胞功能[5,6]

二、MDSCs的诱导和扩增

CMP在病理状态下分化扩增成MDSCs。因此,炎症、感染、肿瘤及器官移植等因素均可诱导血液、骨髓、脾脏、淋巴结及肿瘤原发部位中MDSCs的产生和积累,从而负反馈调节机体免疫功能并实现逃逸宿主免疫攻击。环氧化酶-2、前列腺素、干细胞因子、血管内皮生长因子、粒-单细胞集落刺激因子(GM-CSF)及多种白细胞介素(IL)均可以促进MDSCs扩增。Adeegbe等[7]发现,小鼠腹腔内注射重组G-CSF或IL-2C,可促进Gr-1CD11bMDSCs和Treg细胞在外周淋巴器官聚集,从而显著延缓了小鼠皮肤移植排斥反应。利用GM-CSF+IL-6诱导可促进MDSCs扩增,并通过抑制CD8T淋巴细胞增殖而促进胰腺移植物长期存活[8]。另外,在罹患骨髓增生异常综合征的小鼠和人中,前列环素E2 (PGE2)和其他COX-2激动剂如LPS,IL-1b和γ干扰素(IFN-()也可通过上调单核细胞内COX-2表达并抑制其分化为成熟的树突细胞而诱导Gr-1CD11bMDSCs产生[9]。Chen等[10]发现,促炎症因子S100A9通过与其受体CD33结合而诱导骨髓中MDSCs聚集。进一步研究也证实,S100A8/A9可诱导Gr-1highCD11bhighF4/80CD80IL-4R+/-ArginaseMDSCs生成及扩增[11]

信号传导与转录激活因子-3 (STAT3)及其介导的信号通路是最早发现的调控MDSCs扩增的转录因子[12]。有研究发现,基因缺失STAT3负调控因子的小鼠SOCS3会导致MDSCs在前列腺癌中大量聚集[13]。Hsp72通过激活STAT3信号通路在小鼠和人MDSCs的扩增、激活和免疫抑制功能中也发挥着重要作用[14]。在小鼠肿瘤模型中,使用STAT3抑制剂可导致肿瘤、脾脏和外周血中MDSCs的比例明显下降[15]。除STAT3外,还有多个信号通路也参与了MDSCs扩增等的调控。小鼠造血细胞中C/EBP(缺失会导致其脾脏中MDSCs尤其是M-MDSCs比例下降[8]。小鼠肿瘤模型中,抑制Notch相关信号通路也可诱导MDSCs生成[16]。此外Nlrp3缺失也可导致小鼠肿瘤组织中MDSCs水平下降[17]

三、MDSCs的免疫抑制作用

MDSCs对天然和获得性免疫均有抑制作用。它们可直接抑制淋巴细胞的增殖和分化,又可促进FoxP3+调节性T淋巴细胞(Treg细胞)的产生。同时,MDSCs还可以通过抑制自然杀伤细胞(NK细胞)和DC细胞介导其免疫抑制调节功能。Dugast等[18]的研究证实肾移植受者体内MDSCs数量增多可抑制T细胞增殖。敲除Smad3的小鼠体内诱导产生的CD11bGr1MDSCs可通过抑制CD4+T淋巴细胞增殖而发挥免疫抑制作用[19]。从肝细胞肿瘤患者分离出来的CD14HLA-DR-/low的MDSCs与自体T淋巴细胞共培养后,可诱导CD4CD25Foxp3调节性T细胞产生[20]。此外,还有研究发现,利用可导致获得性免疫缺陷LP-BM5逆转录病毒感染小鼠后,其诱导生成的CD11bGr-1Ly6CMDSCs,可通过一氧化氮(NO)途径抑制T淋巴细胞和B淋巴细胞表达[21]

除了抑制T淋巴和B淋巴细胞外,MDSCs对NK细胞的免疫调节作用也已有报道。小鼠肝癌诱导生成的MDSCs可抑制NK细胞中NKG2D和IFN-(表达,并诱导NK细胞功能丧失,抑制MDSCs则可使受损的肝脏NK细胞功能得以恢复[22]。感染引起的MDSCs增多可导致NK细胞功能异常,并导致启动免疫反应的关键因素TCR(链(CD247)下调[23]。此外,TGFβ1也可与MDSCs结合进而抑制NK细胞功能[22]。有关MDSCs对DC细胞的免疫调节作用,目前也有报道。Greifenberg等[24]发现,联合应用LPS和IFN可明显抑制DC细胞扩增,并使MDSCs免疫活性增强。Poschke等[25]认为,MDSCs对DC细胞的产生和活性并无影响,但能诱导DC细胞成熟减少,并造成DC细胞功能损伤。

四、MDSCs在器官移植中的作用

MDSCs在组织器官中发挥着重要的免疫抑制作用,在皮肤移植中的调节作用报道较多。早期的研究发现,在皮肤移植中免疫球蛋白样转录因子-2 (ILT2)受体及其配体可导致MDSCs数量和功能明显增加。这些ILT2诱导生成的MDSCs低表达I类MHC而高表达IL-4R,并且能显著延长小鼠皮肤移植物的寿命。最近的研究表明,体内注射联合G-CSF和IL-2和诱导MDSCs生成并延长皮肤移植物存活时间[7]。Wu等[19]也发现,Smad3可负性调节MDSCs扩增,因为在Smad3基因缺陷小鼠中,NO介导的MDSCs增加可延缓皮肤移植物发生排斥反应。

利用心脏排斥模型,人们发现IL-2诱导产生的Treg细胞增加有利于提前致敏的心脏移植模型中MDSCs的诱导生成[26]。Brunner等[27]证实,IL-33能诱导TH2细胞因子释放和CD11bhighGr1intMDSCs增加,从而显著延长移植物存活时间。同时,阻断供者体内IL-6信号通路可增加心脏移植物中具有较强免疫活性的CD11bGr1low和CD11bGr1intMDSCs的渗出[28]。经过化学交联的1 -乙基-3-[3-二甲氨基]碳二亚胺盐酸盐处理后的供体脾细胞(ECDI-SPs)可诱导MDSCs扩增,并通过内源性IFN-γ介导的信号通路发挥对心脏移植物的保护作用[29]

在肾移植中,Dugast等发现抗CD28单克隆抗体诱导的大鼠移植肾耐受可诱导其外周血中CD11bCD80/86MDSCs聚集,进而抑制T细胞增殖并诱导T淋巴细胞凋亡。虽然没有发现过继MDSCs可以延长移植肾存活,但可以抑制异体T细胞的增殖[18]。在人肾移植受者中,也发现CD11bCD33HLA-DRMDSCs增加,而且这些MDSCs可以在体外扩增生成Treg细胞[30]。Meng等[31]研究发现,MDSCs水平与移植肾功能恢复呈正比,而且分离出来的MDSCs可扩增生成Treg细胞并抑制IL-17产生。

在胰岛移植中,Yang等[32]研究发现,胰岛细胞和具有免疫抑制作用的肝星形细胞(HpSCs)联合移植可通过抑制小鼠T淋巴细胞应答及增加Treg细胞和MDSCs扩增而延长移植物存活时间。进一步的研究也证实,iNOS相关信号通路在胰岛移植中HpSCs诱导MDSCs生成发挥着关键性作用[33]

在小鼠骨髓移植模型中,人们在血和脾脏中均发现有MDSCs的聚集,据此认为MDSCs扩增可能是放射性治疗导致骨髓抑制的结果。在接受造血干细胞移植的患者中,Mougiakakos等[34]发现CD14HLA-DRlow/negIDOM-MDSCs可抑制IDO依赖性的T细胞增殖活性或CD3链表达。此外,还有研究认为MDSCs聚集与小鼠移植物抗宿主疾病敏感性呈正相关[35]

五、结语

除了免疫抑制剂的广泛使用,更多天然免疫调节成分的发现和应用更应受到重视。因此,开展MDSCs对抑制免疫调控机制的基础研究和临床试验研究都将有助于我们了解MDSCs对免疫系统的抑制作用,有利于我们理解抑制免疫逃逸及免疫耐受的发生机制,可为移植免疫耐受诱导方案提供新的思路。对MDSCs在移植免疫中中作用的研究尚待大量实验深入研究,最终为MDSCs的临床应用提供必要的理论基础与技术依据。

参考文献
[1]
MurdochC, MuthanaM, CoffeltSBet al.The role of myeloid cells in the promotion of tumourangiogenesis[J].Nat Rev Cancer20088(8):618-631. DOI: 10.1038/nrc2444.
[2]
GabrilovichDI, NagarajSMyeloid-derived suppressor cells as regulators of the immune system[J].Nat Rev Immunol20099(3):162-174. DOI: 10.1038/nri2506.
[3]
YounJI, NagarajS, CollazoMet al.Subsets of myeloid-derived suppressor cells in tumor-bearing mice[J].J Immunol2008181(8):5791-5802.
[4]
ZhaoY, WuT, ShaoS, et al. Phenotype, development, and biological function of myeloid-derived suppressor cells[J]. Oncoimmunology2016, 5 (2):e1004983. DOI: 10.1080/2162402X.2015.1004983.
[5]
RodriguezPC, ErnstoffMS, HernandezC, et al.Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes[J]. Cancer research, 2009, 69 (4):1553-1560. DOI: 10.1158/0008-5472.CAN-08-1921.
[6]
KoJS, ZeaAH, RiniBI, et al.Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients[J]. Clinical cancer research : an official journal of the American Association for Cancer Research, 2009, 15 (6):2148-2157. DOI: 10.1158/1078-0432.CCR-08-1332.
[7]
AdeegbeD, SerafiniP, BronteV, et al. In vivo induction of myeloid suppressor cells and CD4(+)Foxp3(+) T regulatory cells prolongs skin allograft survival in mice[J]. Cell transplantation, 2011, 20 (6):941-954. DOI: 10.3727/096368910X540621.
[8]
MarigoI, BosioE, SolitoS, et al. (2010) Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor[J]. Immunity32 (6):790-802. DOI: 10.1016/j.immuni.2010.05.010.
[9]
ObermajerN, MuthuswamyR, LesnockJ, et al. Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells[J]. Blood, 2011, 118 (20):5498-5505. DOI: 10.1182/blood-2011-07-365825.
[10]
ChenX, EksiogluEA, ZhouJ, et al. Induction of myelodysplasia by myeloid-derived suppressor cells[J]. The Journal of clinical investigation, 2013, 123 (11):4595-4611. DOI: 10.1172/JCI67580.
[11]
SinhaP, OkoroC, FoellD, et al. Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells[J]. Journal of immunology, 2008, 181 (7):4666-4675.
[12]
CondamineT, RamachandranI, YounJI, et al. Regulation of tumor metastasis by myeloid-derived suppressor cells[J]. Annual review of medicine, 2015, 6697-110. DOI: 10.1146/annurev-med-051013-052304.
[13]
YuH, LiuY, McFarlandBC, et al. SOCS3 Deficiency in Myeloid Cells Promotes Tumor Development: Involvement of STAT3 Activation and Myeloid-Derived Suppressor Cells[J]. Cancer immunology research, 2015, 3 (7):727-740. DOI: 10.1158/2326-6066.CIR-15-0004.
[14]
ChalminF, LadoireS, MignotG, et al. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells[J]. The Journal of clinical investigation, 2010, 120 (2):457-471. DOI: 10.1172/JCI40483.
[15]
YuanH, CaiP, LiQ, et al.Axitinib augments antitumor activity in renal cell carcinoma via STAT3-dependent reversal of myeloid-derived suppressor cell accumulation[J]. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2014, 68 (6):751-756. DOI: 10.1016/j.biopha.2014.07.002.
[16]
ChengP, KumarV, LiuH, et al. Effects of notch signaling on regulation of myeloid cell differentiation in cancer[J]. Cancer research, 2014, 74 (1):141-152. DOI: 10.1158/0008-5472.CAN-13-1686.
[17]
van DeventerHW, BurgentsJE, WuQP, et al. The inflammasome component NLRP3 impairs antitumor vaccine by enhancing the accumulation of tumor-associated myeloid-derived suppressor cells[J]. Cancer research, 2010, 70 (24):10161-10169. DOI: 10.1158/0008-5472.CAN-10-1921.
[18]
DugastAS, HaudebourgT, CoulonF, et al. Myeloid-derived suppressor cells accumulate in kidney allograft tolerance and specifically suppress effector T cell expansion[J]. Journal of immunology, 2008, 180 (12):7898-7906.
[19]
WuT, SunC, ChenZ, et al. Smad3-deficient CD11b(+)Gr1(+) myeloid-derived suppressor cells prevent allograft rejection via the nitric oxide pathway[J]. Journal of immunology, 2012, 189 (10):4989-5000. DOI: 10.4049/jimmunol.1200068.
[20]
HoechstB, OrmandyLA, BallmaierM, et al. A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells[J]. Gastroenterology, 2008, 135 (1):234-243. DOI: 10.1053/j.gastro.2008.03.020.
[21]
GreenKA, CookWJ, GreenWR. Myeloid-derived suppressor cells in murine retrovirus-induced AIDS inhibit T- and B-cell responses in vitro that are used to define the immunodeficiency[J]. Journal of virology, 2013, 87 (4):2058-2071. doi:10.1128/JVI.01547-12.
[22]
LiH, HanY, GuoQ, et al. Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1[J]. Journal of immunology, 2009, 182 (1):240-249.
[23]
Sade-FeldmanM, KantermanJ, Ish-ShalomE, et al. Tumor necrosis factor-alpha blocks differentiation and enhances suppressive activity of immature myeloid cells during chronic inflammation[J]. Immunity, 2013, 38 (3):541-554. DOI: 10.1016/j.immuni.2013.02.007.
[24]
GreifenbergV, RibechiniE, RossnerS, et al. Myeloid-derived suppressor cell activation by combined LPS and IFN-gamma treatment impairs DC development[J]. European journal of immunology, 2009, 39 (10):2865-2876. DOI: 10.1002/eji.200939486.
[25]
PoschkeI, MaoY, AdamsonL, et al. Myeloid-derived suppressor cells impair the quality of dendritic cell vaccines[J]. Cancer immunology, immunotherapy : CII, 2012, 61 (6):827-838. DOI: 10.1007/s00262-011-1143-y.
[26]
GongW, GeF, LiuD, et al. Role of myeloid-derived suppressor cells in mouse pre-sensitized cardiac transplant model[J]. Clinical immunology, 2014, 153 (1):8-16. DOI: 10.1016/j.clim.2014.03.013.
[27]
BrunnerSM, SchiechlG, FalkW, et al. Interleukin-33 prolongs allograft survival during chronic cardiac rejection[J]. Transplant international : official journal of the European Society for Organ Transplantation, 2011, 24 (10):1027-1039. doi:10.1111/j.1432-2277.2011.01306.x.
[28]
GeF, YuanS, SuL, et al. Alteration of innate immunity by donor IL-6 deficiency in a presensitized heart transplant model[J]. PloS one, 2013, 8 (10):e77559. DOI: 10.1371/journal.pone.0077559.
[29]
BryantJ, LerretNM, WangJJ, et al. Preemptive donor apoptotic cell infusions induce IFN-gamma-producing myeloid-derived suppressor cells for cardiac allograft protection[J]. Journal of immunology, 2014192 (12):6092-6101. DOI: 10.4049/jimmunol.1302771.
[30]
LuanY, MosheirE, MenonMC, et al.Monocytic myeloid-derived suppressor cells accumulate in renal transplant patients and mediate CD4(+) Foxp3(+) Treg expansion[J]. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons, 2013, 13 (12):3123-3131. DOI: 10.1111/ajt.12461.
[31]
MengF, ChenS, GuoX, et al. Clinical significance of myeloid-derived suppressor cells in human renal transplantation with acute T cell-mediated rejection[J]. Inflammation, 2014, 37 (5):1799-1805. DOI: 10.1007/s10753-014-9910-5.
[32]
YangHR, ChouHS, GuX, et al. Mechanistic insights into immunomodulation by hepatic stellate cells in mice: a critical role of interferon-gamma signaling[J]. Hepatology, 2009, 50 (6):1981-1991. DOI: 10.1002/hep.23202.
[33]
ArakawaY, QinJ, ChouHS, et al. Cotransplantation with myeloid-derived suppressor cells protects cell transplants: a crucial role of inducible nitric oxide synthase[J]. Transplantation, 2014, 97 (7):740-747. DOI: 10.1097/01.TP.0000442504.23885.f7.
[34]
MougiakakosD, JitschinR, von BahrL, et al. Immunosuppressive CD14+HLA-DRlow/neg IDO+ myeloid cells in patients following allogeneic hematopoietic stem cell transplantation[J]. Leukemia, 2013, 27 (2):377-388. DOI: 10.1038/leu.2012.215.
[35]
WangD, YuY, HaarbergK, et al. Dynamic change and impact of myeloid-derived suppressor cells in allogeneic bone marrow transplantation in mice[J]. Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation, 2013, 19 (5):692-702. DOI: 10.1016/j.bbmt.2013.01.008.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词