专家论坛
新型生物活性材料促进创面修复和皮肤再生
中华烧伤杂志, 2021,37(12) : 1105-1109. DOI: 10.3760/cma.j.cn501120-20211029-00373
摘要

微环境调控是促进创面修复和皮肤再生的关键技术。近年来,系列调控微环境和细胞行为的新型生物活性材料得以研发,显示出高效诱导创面修复和皮肤附件再生的能力。本文就相关新型生物活性材料的研究进展及其作用机制进行总结。

引用本文: 吕国忠, 赵朋. 新型生物活性材料促进创面修复和皮肤再生 [J] . 中华烧伤杂志, 2021, 37(12) : 1105-1109. DOI: 10.3760/cma.j.cn501120-20211029-00373.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

版权归中华医学会所有。

未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。

烧创伤导致的严重体表组织缺损对患者打击巨大,除容易引发感染和脓毒症外,还会导致骨、肌肉等深部组织外露甚至进行性坏死,形成更复杂的难治性创面。快速发展的急救技术显著提高了烧创伤患者的抢救成功率,但烧创伤创面的治疗仍存在难题。首先是创面瘢痕愈合,虽然生命得以挽救,患者仍长期遭受瘢痕带来的困扰,包括毁容、挛缩、瘙痒、无法排汗等。烧伤创面患者增生性瘢痕发生率高达70%1。据估计,全球范围每年用于瘢痕治疗的医疗费用在2027年将达到320亿美元,是沉重的社会负担2。此外,生存质量的下降还给患者造成沉重的心理负担3。其次是复杂创面的修复难题。由于创基条件差,胸骨、肌肉等深部组织外露创面的治疗十分棘手。在感染等因素影响下这些创面会转变为慢性创面,进一步加大治疗难度,最终会导致截肢等。解决这些难题具有重要的临床价值,也一直是创面修复领域的研究热点。结合本课题组的研究经验,本文主要总结了近期国内外有关生物活性材料促进创面修复和皮肤附件再生的研究成果和进展,为后续研究提供参考。

1 创面微环境与生物活性材料的关系

创面愈合是人体在生物进化过程中获得的一种自我保护功能,使人体免遭外界污染物的危害而得以存活。但是,创面自愈合能力有限,自然状态下,烧创伤创面愈合缓慢,增加进行性加深和感染的风险。而且,自愈创面与临床干预创面相比更容易发生异常愈合。创面深度过深、张力过高、异常炎症反应等均是引发异常愈合,尤其是瘢痕愈合的原因。与成人相比,人类妊娠早期胎儿创面发生无瘢痕愈合。成人和早期胎儿创面微环境差异被认为是决定创面不同愈合模式的关键因素4

创面微环境是指创面局部及其邻近区域中影响创面愈合的物理、生物化学、细胞等因素的总和,可分为外部微环境和内部微环境5。外部微环境涵盖温度、湿度、张力、酸碱度等因素,内部微环境涵盖ECM和细胞因素。不同原因影响创面愈合的作用最终均体现于对内部微环境的改变,例如,创面张力通过提高ECM刚度促进肌Fb(MFb)分化6。不利于创面再生性修复的内部微环境因素包括异常的炎症反应、生物化学和生物物理信号、细胞表型和功能。调控创面微环境的本质是通过材料、药物、物理疗法等不同方法直接或间接地改善内部微环境,在生物化学、机械力、空间结构等多方面调控免疫和非免疫细胞行为,进而影响创面愈合过程。微环境调控是促进创面再生修复的必由之路7

生物活性材料在调控创面微环境方面具有显著优势。与局部用药、负压吸引等方法相比,利用生物活性材料可同时实现生物化学、机械力、空间结构等微环境要素的调节和营造,为创面细胞提供三维生长空间的同时,向细胞传递机械力、生物化学等信号。随着第3代生物材料理论体系的建立,创面修复生物活性材料的研发思路发生改变,通过再生医学、材料学、工程学等学科的交叉融合,构建主动、高效调控创面细胞行为的生物活性材料成为研究焦点8。近年来,以创面再生性修复和皮肤附件再生为目标,国内外研究者研发了系列新型生物活性材料,为创面修复提供新材料的同时,进一步加深了人们对创面修复的理解。

2 生物活性材料促进创面修复和皮肤再生的机制
2.1 影响免疫细胞行为

利用生物活性材料可实现对创面免疫细胞行为和炎症反应的调控。损伤修复和组织重建的过程与炎症反应密切相关,因为免疫细胞不仅发挥吞噬病原体和坏死组织的作用9,还通过分泌细胞因子、生长因子以及基质金属蛋白酶(MMP)等参与组织重建过程。一些生物活性材料通过诱导巨噬细胞发生M2型极化,营造促再生炎症反应微环境。葡聚糖-甲基丙烯酸异氰基乙酯-乙胺水凝胶诱导巨噬细胞发生M2型极化,其促进真皮功能性重建和毛囊再生的作用分别在小鼠和猪全层皮肤缺损创面模型中得到验证10。膀胱脱细胞基质(urinary bladder-decellularized matrix,UBM)和小肠黏膜下层基质等猪组织脱细胞基质诱导巨噬细胞向M2型极化,在烧创伤急性创面、下肢复杂性创面的修复中显示出与胶原蛋白基合成真皮替代物相比更强的促愈合能力11, 12。笔者课题组研究显示,糖尿病小鼠全层皮肤缺损创面巨噬细胞较快迁入并广泛分布于UBM中,UBM诱导迁入的巨噬细胞发生M2型极化,表达FGF-2、VEGF等促愈和促血管新生生长因子13。脱细胞基质材料含有基质结合纳米囊,后者含有的微小RNA被证实是调控巨噬细胞向抗炎表型极化的关键分子14。临床证据与上述结论相符,UBM单独应用即可促进肌腱和骨外露复杂创面愈合和真皮重建15,而胶原蛋白基合成真皮替代物需联合VSD系统以提高复杂创面愈合速度16。虽然缺少临床组织学证据,但大量的体外和动物模型研究证据提示,调控巨噬细胞行为并产生促再生微环境是ECM材料增强创面愈合的关键机制之一。

除调控炎症反应之外,近期研究证实了生物活性材料诱导创面发生适应性免疫反应的功能。Jennifer Elisseeff课题组较早注意到UBM激活适应性免疫反应的作用17,并证实UBM诱导小鼠角膜上皮缺损创面发生适应性免疫反应,促进角膜再生和视力恢复18。此外,一些合成生物活性材料也被证实具有激活创面适应性免疫反应的功能。Griffin等19对比了分别含有D型和L型氨基酸多肽的微孔退火颗粒水凝胶对小鼠全层皮肤缺损创面炎症反应的影响。结果显示,与L型相比,含有D型氨基酸多肽的微孔退火颗粒水凝胶可显著增强IL-33+骨髓细胞的募集,抑制瘢痕形成,并促进毛囊、皮脂腺再生。目前,与炎症反应相比,生物活性材料调控适应性免疫反应的机制有待明确,主要包括抗原产生、呈递过程及其与材料组成、结构等性质的关系20

2.2 调控非免疫细胞行为

利用生物活性材料可实现对创面非免疫细胞行为的调控。在高张力、真皮缺失等因素的影响下,深度创面中的MFb过度活跃,大量合成胶原蛋白等基质分子,最终形成瘢痕组织。因此,调控创基细胞行为,抑制其向MFb分化是减轻瘢痕形成的重要策略21。然而,单独应用药物或物理的方法难以达到这一目的,因为调控MFb行为的因素多且复杂,不仅涉及炎症反应,还涉及细胞所处微环境的结构、力学性能和生物化学组成等。生物活性材料在调控MFb行为方面具有显著优势。已上市的Integra®、PELNAC®等胶原蛋白基真皮替代物显示出抑制瘢痕形成的功能,其关键作用机制之一即是通过支架中GFOGER和GLOGER多肽调控MFb的黏附行为,抑制MFb聚集及其收缩创面的作用22。但是,Integra®等真皮替代物未显示出对MFb分化的抑制性,而一些脱细胞基质材料则显示出阻碍创面MFb分化的作用18。例如,UBM抑制小鼠角膜上皮缺损创面MFb分化18。人羊膜脱细胞基质抑制兔耳全层皮肤缺损创面MFb分化,可降低胶原蛋白表达量和沉积量并提高MMP-1的表达和分泌,有效促进皮肤再生23。利用载药生物活性材料调控创面细胞行为是促进创面再生性修复的另一途径。含高渗葡萄糖酸钾的胶原蛋白水凝胶可抑制小鼠全层皮肤缺损创面MFb分化,促进皮肤再生24。载氧化锌-姜黄素纳米复合物的胶原蛋白支架可显著上调大鼠烧伤创面细胞表达的TGF-β3的活性,促进创面无瘢痕愈合25。含TGF-β1小干扰RNA的胶原蛋白-壳聚糖支架可长效抑制猪全层皮肤缺损创面细胞TGF-β1信号通路,促进皮肤再生26

利用生物活性材料的空间结构和力学性能可实现对细胞存活、分化、空间排布等行为的调控。聚己内酯电纺丝支架与聚己内酯多孔支架相比,显示出促进脂肪间充质干细胞表达核因子κB的作用,增强细胞旁分泌功能,使大鼠全层皮肤缺损创面中M2型巨噬细胞增加27。笔者课题组构建了柔性丝蛋白纳米纤维支架,研究显示仅通过纳米结构和机械特性的优化即可诱导大鼠骨髓间充质干细胞向内皮细胞分化28。Xu等29利用聚乳酸和生物玻璃构成的纳米纤维支架向共培养的Fb和内皮细胞同时传递结构信号和生物化学信号,显著增强2种细胞的旁分泌功能,促进小鼠全层皮肤缺损创面血管化和再生性修复。生物活性材料通过黏附受体整合素、机械门控离子通道Piezo1蛋白等受体向细胞施加力学和空间结构的调控作用。在材料应力刺激下,巨噬细胞、Fb的整合素受体被激活,使潜在TGF-β1得到释放30。另外,生物活性材料通过肌动蛋白微丝连接整合素的瞬时受体电位M7和C1在细胞膜张力增加时促进钙离子内流,将力学刺激转化为电化学信号,影响细胞行为31。对接种于聚丙烯酰胺水凝胶的小鼠骨髓来源巨噬细胞,细胞Piezo1受体与整合素相比在应力作用下直接向胞内输送钙离子32。材料空间结构对细胞行为的影响是基于细胞黏附配体的空间分布和密度而实现的。在材料刚度一定的条件下,特定微结构如纳米纤维结构、取向结构、孔结构可改变力学刺激的方向和强度,进而调控细胞迁移、增殖和分化等行为33;细胞间连接及其相互作用也受到材料空间结构的影响33

2.3 促进皮肤附件再生

此外,生物活性材料在皮肤附件再生医学技术中显示出很高的应用潜能。首先,特定小分子药物联合生物可降解三维支架通过多因素协同作用促进皮肤附件再生。Geoffrey Gurtner团队以普鲁兰多糖-胶原蛋白复合水凝胶作为局部黏着斑激酶(focal adhesion kinase,FAK)抑制剂(化合物VS6062)的载体,显著增强杜洛克猪深度创面愈合作用的同时,实现了毛囊和汗腺的再生34。抑制FAK使Fb蛋白激酶B(Akt)信号放大,进而上调早期生长应答因子1(EGR1)和乳脂球EGF8(MFGE8)这2种蛋白的表达,Akt-EGR1信号通路被认为与细胞再生性表型有关,而MFGE8具有促进胶原蛋白分子被吞噬的作用35。其次,通过化学手性异构激活适应性免疫反应的D型氨基酸多肽的微孔退火颗粒水凝胶支架可诱导小鼠全层皮肤缺损创面毛囊新生,此外,研究者进一步证实了毛囊新生对支架激活适应性免疫的依赖性19,但相关分子机制有待明确。

生物活性材料与三维生物打印技术的结合为皮肤附件再生提供了新方案。以明胶和透明质酸衍生化合物作为三维生物打印墨水,可维持人Fb和人脐静脉内皮细胞团块在支架中的空间排布,维持打印组织的活力,促进大鼠和猪全层皮肤缺损创面血管化、再生性修复和毛囊、皮脂腺等附件再生36。以脱细胞基质来源材料作为生物墨水成分,可显著增强细胞对细胞因子、生长因子信号的响应性,为皮肤附件再生提供基础37。2020年,付小兵院士团队将足趾垫匀浆蛋白和生物墨水共同作为骨髓间充质干细胞的载体,应用三维打印技术在小鼠足趾垫烫伤创面实现了汗腺的原位再生,并证实了足趾匀浆蛋白在三维环境下诱导骨髓间充质干细胞表达胶原三螺旋重复蛋白1和血红素加氧酶基因1,促进汗腺再生38

3 总结与展望

综上,生物活性材料已发展成为创面修复技术的基础性要素39。近年来,系列主动调控创面微环境与细胞的新型生物活性材料得以研发,其调控创面愈合的新机制进一步加深了人们对创面修复的理解,为其临床应用提供了坚实的理论依据。然而,至今,大部分生物活性材料都是针对创面愈合的单一微环境要素或时间而设计和应用的。为了最终达到创面再生性修复的目的,生物活性材料应朝着整合多种作用机制的多功能材料发展,更有效地发挥其通过不同特性协同调控创面愈合的优势。因此,如何在同一体系中整合调控炎症反应、呈递适宜生物化学和生物物理信号的材料基元是关键的科学问题。此外,生物活性材料的研发和应用应更加重视创面的精准修复,针对创面的不同特点、调控创面微环境的不同目的和时机优化材料性能。相信随着再生医学、生物材料学和组织工程学的快速发展,将产生更多的新型生物活性材料40,推动创面修复技术朝着精准、高效调控创面微环境的方向发展,为实现创面“完美修复”和皮肤再生奠定基础。

利益冲突
利益冲突

所有作者均声明不存在利益冲突

参考文献
[1]
FinnertyCC,JeschkeMG,BranskiLK,et al.Hypertrophic scarring: the greatest unmet challenge after burn injury[J].Lancet,2016,388(10052):1427-1436.DOI:10.1016/S0140-6736(16)31406-4.
[2]
SenCK.Human wound and its burden: updated 2020 compendium of estimates[J].Adv Wound Care (New Rochelle),2021,10(5):281-292.DOI:10.1089/wound.2021.0026.
[3]
ClarkR.To scar or not to scar[J].N Engl J Med,2021,385(5):469-471.DOI:10.1056/NEJMcibr2107204.
[4]
MooreAL,MarshallCD,BarnesLA,et al.Scarless wound healing: transitioning from fetal research to regenerative healing[J].Wiley Interdiscip Rev Dev Biol,2018,7(2):10.1002/wdev.309.DOI:10.1002/wdev.309.
[5]
CastañoO,Pérez-AmodioS,Navarro-RequenaC,et al.Instructive microenvironments in skin wound healing: biomaterials as signal releasing platforms[J].Adv Drug Deliv Rev,2018,129:95-117.DOI:10.1016/j.addr.2018.03.012.
[6]
TracyLE,MinasianRA,CatersonEJ.Extracellular matrix and dermal fibroblast function in the healing wound[J].Adv Wound Care (New Rochelle),2016,5(3):119-136.DOI:10.1089/wound.2014.0561.
[7]
程飚,付小兵.微环境控制是实现创面完美修复的必由之路[J].中华烧伤杂志,2020,36(11):1003-1008.DOI:10.3760/cma.j.cn501120-20201009-00429.
[8]
HynesRO.The extracellular matrix: not just pretty fibrils[J].Science,2009,326(5957):1216-1219.DOI:10.1126/science.1176009.
[9]
JulierZ,ParkAJ,BriquezPS,et al.Promoting tissue regeneration by modulating the immune system[J].Acta Biomater,2017,53:13-28.DOI:10.1016/j.actbio.2017.01.056.
[10]
SunG.Pro-regenerative hydrogel restores scarless skin during cutaneous wound healing[J].Adv Healthc Mater,2017,6(23).DOI:10.1002/adhm.201700659.
[11]
HaddadAG,GiatsidisG,OrgillDP,et al.Skin substitutes and bioscaffolds: temporary and permanent coverage[J].Clin Plast Surg,2017,44(3):627-634.DOI:10.1016/j.cps.2017.02.019.
[12]
KraemerBA. Management of complex distal lower extremity wounds using a porcine urinary bladder matrix (UBM-ECM) [M]// ShiffmanMA, LowM. Plastic and thoracic surgery, orthopedics and ophthalmology. Cham: Springer,2018: 3-29. DOI: 10.1007/15695_2017_60.
[13]
赵朋,杨敏烈,储国平,.猪膀胱脱细胞基质和猪脱细胞真皮基质对糖尿病小鼠全层皮肤缺损创面愈合的影响[J].中华烧伤杂志,2020,36(12):1130-1138.DOI:10.3760/cma.j.cn501120-20200901-00399.
[14]
HuleihelL,HusseyGS,NaranjoJD,et al.Matrix-bound nanovesicles within ECM bioscaffolds[J].Sci Adv,2016,2(6):e1600502.DOI:10.1126/sciadv.1600502.
[15]
ValerioIL,CampbellP,SabinoJ,et al.The use of urinary bladder matrix in the treatment of trauma and combat casualty wound care[J].Regen Med,2015,10(5):611-622.DOI:10.2217/rme.15.34.
[16]
HsuKF,ChiuYL,ChiaoHY,et al.Negative-pressure wound therapy combined with artificial dermis (Terudermis) followed by split-thickness skin graft might be an effective treatment option for wounds exposing tendon and bone: a retrospective observation study[J].Medicine (Baltimore),2021,100(14):e25395.DOI:10.1097/MD.0000000000025395.
[17]
WolfMT, GangulyS, WangTL, et al. A biologic scaffold-associated type 2 immune microenvironment inhibits tumor formation and synergizes with checkpoint immunotherapy [J]. Sci Transl Med, 2019, 11(477): eaat7973. DOI: 10.1126/scitranslmed.aat7973.
[18]
WangX, ChungL, HooksJ, et al. Type 2 immunity induced by bladder extracellular matrix enhances corneal wound healing [J]. Sci Adv, 2021, 7(16): eabe2635. DOI: 10.1126/sciadv.abe2635.
[19]
GriffinDR,ArchangMM,KuanCH,et al.Activating an adaptive immune response from a hydrogel scaffold imparts regenerative wound healing[J].Nat Mater,2021,20(4):560-569.DOI:10.1038/s41563-020-00844-w.
[20]
SadtlerK, SinghA, WolfM, et al. Design, clinical translation and immunological response of biomaterials in regenerative medicine [J]. Nat Rev Mater, 2016, 1(7): 16040. DOI: 10.1038/natrevmats.2016.40.
[21]
RinkevichY,WalmsleyGG,HuMS,et al.Skin fibrosis. Identification and isolation of a dermal lineage with intrinsic fibrogenic potential[J].Science,2015,348(6232):aaa2151.DOI:10.1126/science.aaa2151.
[22]
YannasIV,TzeranisDS,SoP.Regeneration of injured skin and peripheral nerves requires control of wound contraction, not scar formation[J].Wound Repair Regen,2017,25(2):177-191.DOI:10.1111/wrr.12516.
[23]
GholipourmalekabadiM,KhosravimelalS,NokhbedehghanZ,et al.Modulation of hypertrophic scar formation using amniotic membrane/electrospun silk fibroin bilayer membrane in a rabbit ear model[J].ACS Biomater Sci Eng,2019,5(3):1487-1496.DOI:10.1021/acsbiomaterials.8b01521.
[24]
GrasmanJM,WilliamsMD,RazisCG,et al.Hyperosmolar potassium inhibits myofibroblast conversion and reduces scar tissue formation[J].ACS Biomater Sci Eng,2019,5(10):5327-5336.DOI:10.1021/acsbiomaterials.9b00810.
[25]
KalirajanC,PalanisamyT.A ZnO-curcumin nanocomposite embedded hybrid collagen scaffold for effective scarless skin regeneration in acute burn injury[J].J Mater Chem B,2019,7(38):5873-5886.DOI:10.1039/c9tb01097a.
[26]
LiuX,MaL,LiangJ,et al.RNAi functionalized collagen-chitosan/silicone membrane bilayer dermal equivalent for full-thickness skin regeneration with inhibited scarring[J].Biomaterials,2013,34(8):2038-2048.DOI:10.1016/j.biomaterials.2012.11.062.
[27]
SuN,GaoPL,WangK,et al.Fibrous scaffolds potentiate the paracrine function of mesenchymal stem cells: a new dimension in cell-material interaction[J].Biomaterials,2017,141:74-85.DOI:10.1016/j.biomaterials.2017.06.028.
[28]
HanH,NingH,LiuS,et al.Silk biomaterials with vascularization capacity[J].Adv Funct Mater,2016,26(3):421-436.DOI:10.1002/adfm.201504160.
[29]
XuY,PengJ,DongX,et al.Combined chemical and structural signals of biomaterials synergistically activate cell-cell communications for improving tissue regeneration[J].Acta Biomater,2017,55:249-261.DOI:10.1016/j.actbio.2017.03.056.
[30]
LandryNM,DixonI.Fibroblast mechanosensing, SKI and Hippo signaling and the cardiac fibroblast phenotype: looking beyond TGF-β[J].Cell Signal,2020,76:109802.DOI:10.1016/j.cellsig.2020.109802.
[31]
WangJH,ThampattyBP.An introductory review of cell mechanobiology[J].Biomech Model Mechanobiol,2006,5(1):1-16.DOI:10.1007/s10237-005-0012-z.
[32]
AtchaH,JairamanA,HoltJR,et al.Mechanically activated ion channel Piezo1 modulates macrophage polarization and stiffness sensing[J].Nat Commun,2021,12(1):3256.DOI:10.1038/s41467-021-23482-5.
[33]
LuuTU, LiuWF. Regulation of macrophages by extracellular matrix composition and adhesion geometry[J]. Regen Eng Transl Med, 2018, 4: 238-246. DOI: 10.1007/s40883-018-0065-z.
[34]
ChenK,KwonSH,HennD,et al.Disrupting biological sensors of force promotes tissue regeneration in large organisms[J].Nat Commun,2021,12(1):5256.DOI:10.1038/s41467-021-25410-z.
[35]
YuJ,ZhangSS,SaitoK,et al.PTEN regulation by Akt-EGR1-ARF-PTEN axis[J].EMBO J,2009,28(1):21-33.DOI:10.1038/emboj.2008.238.
[36]
ZhouF,HongY,LiangR,et al.Rapid printing of bio-inspired 3D tissue constructs for skin regeneration[J].Biomaterials,2020,258:120287.DOI:10.1016/j.biomaterials.2020.120287.
[37]
KimBS,KwonYW,KongJS,et al.3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: a step towards advanced skin tissue engineering[J].Biomaterials,2018,168:38-53.DOI:10.1016/j.biomaterials.2018.03.040.
[38]
YaoB,WangR,WangY,et al.Biochemical and structural cues of 3D-printed matrix synergistically direct MSC differentiation for functional sweat gland regeneration[J].Sci Adv,2020,6(10):eaaz1094.DOI:10.1126/sciadv.aaz1094.
[39]
MurrayRZ,WestZE,CowinAJ,et al.Development and use of biomaterials as wound healing therapies[J/OL].Burns Trauma,2019,7:2[2021-10-29].https://pubmed.ncbi.nlm.nih.gov/30701184/.DOI:10.1186/s41038-018-0139-7.
[40]
GaharwarAK, SinghI, KhademhosseiniA. Engineered biomaterials for in situ tissue regeneration [J]. Nat Rev Mater, 2020, 5: 686-705. DOI: 10.1038/s41578-020-0209-x.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词