专题论坛
组蛋白去乙酰化酶抑制剂治疗急性髓细胞白血病的研究新进展
国际输血及血液学杂志, 2022,45(5) : 383-387. DOI: 10.3760/cma.j.cn511693-20210721-00149
摘要

急性髓细胞白血病(AML)是成年人中最常见的一类白血病,其标准诱导化疗方案为阿糖胞苷联合蒽环类药物的"7+3"方案,诱导缓解后,可采取大剂量阿糖胞苷为主的巩固化疗。但是,部分患者经标准诱导化疗不能达到完全缓解(CR),而部分达到CR者最终复发并进展为难治性AML,因此化疗对其疗效有限。老年及体能状态不佳患者通常无法耐受标准诱导及巩固化疗的不良反应,其疗效更差。随着精准诊断及靶向治疗的发展,化疗联合分子靶向药物治疗有望改善AML患者的预后。组蛋白去乙酰化酶抑制剂(HDACI)通过表观遗传学修饰,调控靶基因及蛋白表达,从而影响AML细胞增殖、凋亡及耐药,但对正常细胞的毒性较小,在AML靶向治疗领域具有一定的临床应用前景。笔者拟就HDACI治疗AML的最新研究进展进行总结,旨在探讨HDACI在AML患者治疗中的临床应用价值。

引用本文: 黄芸, 江雪杰. 组蛋白去乙酰化酶抑制剂治疗急性髓细胞白血病的研究新进展 [J] . 国际输血及血液学杂志, 2022, 45(5) : 383-387. DOI: 10.3760/cma.j.cn511693-20210721-00149.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

版权归中华医学会所有。

未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。

急性髓细胞白血病(acute myeloid leukemia, AML)是一类起源于髓系干/祖细胞的肿瘤性疾病,是成年人中最常见的血液肿瘤,患者预后较差。目前,对初诊AML患者的标准诱导化疗方案为"7+3"方案,即阿糖胞苷(第1~7天)联合蒽环类药物(第1~3天)。该诱导化疗方案治疗年龄<60岁AML患者的诱导化疗完全缓解(complete remission,CR)率为60%~80%[1]。但是,即使获得CR患者接受巩固化疗后仍有相当部分复发,最终进展为难治性AML,而化疗对该类患者的疗效有限。患者诱导缓解后依据其预后分层和微小残留病(minimal residual disease,MRD)情况,进一步选择巩固化疗或异基因造血干细胞移植(allogeneic hematopoietic stem cell transplantation,allo-HSCT)。老年及体能状态不佳患者通常无法耐受标准诱导、大剂量巩固化疗或allo-HSCT治疗,其疗效更差。因此,寻找高效且低不良反应的靶向药物联合化疗治疗AML患者,对于提高疗效具有一定的临床意义。

表观遗传学修饰是近年血液系统恶性疾病治疗领域的研究热点之一,包括DNA甲基化与去甲基化、组蛋白乙酰化及去乙酰化修饰等。表观遗传学修饰可以通过调控AML细胞信号通路相关基因及蛋白的表达,影响AML细胞增殖、分化及凋亡。组蛋白是真核细胞染色体的结构蛋白,富含带正电荷的碱性氨基酸残基,与DNA中带负电荷的磷酸基团相互作用后紧密结合,共同构成染色质。组蛋白翻译后修饰在调控基因表达中发挥重要作用,包括组蛋白甲基化、乙酰化、磷酸化、泛素化等。组蛋白被乙酰化修饰后,其所带电荷发生改变,与带负电荷的DNA相斥,使染色质开放,激活靶基因转录。组蛋白去乙酰化酶(histone deacetylase,HDAC)不仅可以使组蛋白发生去乙酰化,从而抑制染色质开放及基因转录[1],还可以参与组蛋白之外其他蛋白的翻译后修饰,影响蛋白质分子,如微管蛋白、热休克蛋白90、多种转录因子和DNA修复蛋白等的活性[2]。HDAC抑制剂(HDAC inhibitors,HDACI)可以增加组蛋白乙酰化水平,调控细胞周期、细胞凋亡及自噬相关基因转录与表达,从而杀伤AML细胞,具有令人期待的临床应用前景[3]

1 HDACI的分类

根据化学结构不同,HDACI可以分为5类:羟肟酸类、羟酸类、苯甲酰胺类、环肽类、sirtuin抑制剂类[4]。羟肟酸类HDACI为广谱HDACI,可以抑制所有类型的HDAC,代表药物有曲古他汀、帕比司他(panobinostat)、伏立诺他(vorinostat/suberoylanilide,SAHA)。羟酸类HDACI可以抑制Ⅰ类和Ⅱa类HDAC,代表药物有丙戊酸(valproic acid)。苯甲酰胺类HDACI可以特异性抑制Ⅰ类HDAC,代表药物有西达本胺(chidamide)。环肽类HDACI靶向抑制部分Ⅰ、Ⅱa和Ⅳ类HDAC,代表药物有罗米地新(romidepsin)。sirtuin抑制剂类HDACI包括泛抑制剂烟酰胺和特异性沉默信息转录调控因子(silent information regulator type,SIRT)1和SIRT2抑制剂[5]

2 HDACI治疗AML的作用机制
2.1 HDACI对AML细胞增殖及凋亡的影响

HDCAI可以通过不同机制抑制AML细胞增殖,并且促进其凋亡。研究表明,SAHA可以促进AML细胞系NB4、U937及AML原代细胞的DNA双链断裂和氧化性损伤,增加含半胱氨酸的天冬氨酸蛋白水解酶(cysteinyl aspartate specific proteinase,Caspase)-3/7活性,诱导AML细胞凋亡,以及使细胞周期阻滞于G2/M期[6]。Nebbioso等[7]研究发现,SAHA还可以通过抑制c-Myc蛋白表达,进而激活肿瘤坏死因子相关凋亡诱导配体(tumor necrosis factor related apoptosis inducing ligand,TRAIL),促进AML细胞凋亡。丙戊酸不仅可以通过抑制组蛋白去乙酰化、蛋白质磷酸化,促进RASSF1A基因表达等诱导AML细胞凋亡、抑制增殖[8,9];还可以通过破坏微管和微丝蛋白影响细胞形态和运动,抑制AML细胞增殖[10]。研究表明,帕比司他、丙戊酸能够通过泛素化降解AML1/ETO融合蛋白,诱导伴t(8;21)的AML细胞的分化[11,12]。Silva等[13]通过细胞培养体外实验结果证明,SAHA可促进髓系白血病细胞系HL60、K562、THP1发生终末分化。西达本胺是新型HDACI,可以通过增加细胞因子信号传导抑制因子(suppressor of cytokine signaling,SOCS)3的表达,降低Janus激酶(Janus kinase,JAK)2和信号转导与转录激活因子(signal transducer and activator of transcription,STAT)3的活性,诱导骨髓增生异常综合征(myelodysplastic syndromes,MDS)和急性红白血病细胞凋亡。还有研究结果发现,西达本胺可以通过激活活性氧簇(reactive oxygen species,ROS),增加DNA损伤,诱导白血病干/祖细胞凋亡[14,15]

2.2 HDACI对AML化疗耐药的影响

多项研究表明,HDCAI可以增加AML细胞对化疗药物的敏感性。对AML细胞株THP-1和OCI-AML3的研究表明,帕比司他可以通过抑制Ⅰ、Ⅱ、Ⅲ类HDAC,以降低乳腺癌相关蛋白(breast cancer susceptibility protein,BRCA)1,细胞周期检测点激酶(checkpoint kinase 1,CHK)1和RAD51的表达,增加常规化疗药物阿糖胞苷或柔红霉素诱导的AML细胞DNA损伤和细胞凋亡[16]。体内外研究结果证实,SAHA联合柔红霉素或阿糖胞苷可以协同抗AML细胞增殖,延长白血病小鼠的生存期[17,18]。罗米地新不但可以调控耐药基因的表达,增加AML细胞对化疗药物阿糖胞苷的敏感性,还可以靶向清除CD123+CD47+白血病干细胞,提高化疗药物的疗效[19]。Li等[20]研究发现,西达本胺可以通过激活Caspase-3和聚ADP-核糖聚合酶(poly ADP-ribose polymerase,PARP)裂解,增强柔红霉素、去甲氧柔红霉素和阿糖胞苷等化疗药物对AML细胞DNA的诱导损伤作用,诱导白血病干/祖细胞和复发/难治性AML原代细胞凋亡。还有研究表明,西达本胺可以通过调控HDAC3/AKT/P21/CDK2信号通路活性,增加AML细胞对蒽环类药物的敏感性[21],并且降低果蝇zeste基因增强子人类同源物(enhancer of zeste homolog,EZH)2,组蛋白H3第27位点赖氨酸三甲基化(histone H3 lysine 27 trimethylation,H3K27me3)和DNA甲基化转移酶(DNA methyltransferase,DNMT)3A表达水平,抑制SMO/GLI-1信号通路的活性[22]。因此,HDACI联合化疗有望提高AML患者疗效。

2.3 HDACI对AML细胞自噬的影响

在不同类型AML细胞中自噬的作用不同,HDACI对自噬的影响也不相同。Torgersen等[23]研究发现,SAHA和丙戊酸可以增加AML1-ETO融合蛋白阳性AML细胞的自噬水平,促进白血病细胞生长,自噬抑制剂氯喹可以明显增强HDACI对AML细胞的诱导凋亡作用。体内、外实验结果表明,基础自噬水平低的白血病细胞对HDACI更为敏感,如唐氏综合征相关急性巨核细胞白血病(Down syndrome-acute megakaryoblastic leukemia,DS-AMKL)细胞系及AML原代细胞,这提示AML细胞自噬水平可能预测其对HDACI的药物敏感性[24]。研究还发现,西达本胺可以提高组蛋白H3第9位点赖氨酸三甲基化(histone H3 lysine 9 trimethylation,H3K9me3)表达水平,降低SIRT1水平,从而上调AML细胞自噬水平,增加其对阿糖胞苷及索拉菲尼的药物敏感性[25]。因此,HDACI可以通过调控AML细胞自噬水平,影响AML细胞活性及对药物的敏感性。

2.4 HDACI对AML骨髓微环境的影响

HDACI可以通过作用于骨髓微环境,发挥对AML细胞的杀伤作用。研究发现,丙戊酸可以上调AML细胞表面的自然杀伤(natural killer,NK)配体,从而增强NK细胞对AML细胞的攻击及杀伤能力[26]。丙戊酸能够上调AML患者骨髓CD8+ T细胞中免疫检查点受体的表达水平,增强T细胞的免疫功能,这可能有利于提高AML患者的疗效[27]。Kremer等[28]研究发现,HDACI可以上调成骨细胞Na+/H+交换调控因子(Na+/H+ exchange regulatory factor,NHERF)1支架蛋白表达,从而阻断成骨细胞对AML细胞的庇护作用。Sterner等[29]发现,HDACI可以抑制成骨细胞诱导的AML细胞对阿糖胞苷的耐药。HDACI联合化疗有望提高AML患者的疗效、清除MRD,从而提高AML患者的无复发生存(relapse-free survival,RFS)率。HDACI可以通过影响骨髓微环境中的免疫细胞、成骨细胞等组成成分,逆转骨髓微环境对AML细胞的庇护作用,从而有利于治疗。

3 HDACI治疗AML的临床研究进展
3.1 HDACI单药治疗AML

体外细胞和动物实验结果虽然表明HDACI具有一定的抗AML活性,但临床试验结果表明,帕比司他、SAHA、丙戊酸及一些其他的HDACI单药治疗对AML患者的疗效不佳[5,30,31,32]。基于HDACI可增加AML细胞对化疗的敏感性的相关研究结果,HDACI联合化疗或其他分子靶向药物有望应用于AML治疗。

3.2 HDACI联合化疗治疗AML

帕比司他联合伊达比星和阿糖胞苷治疗高危AML年轻患者的临床研究表明,患者总体反应率(overall response rate,ORR)为60.9%(28/46),其中20例患者达到CR,8例达到CR伴血细胞计数不完全恢复(CR with incomplete blood count recovery,CRi),1年无事件生存(event-free survival,EFS)率为78.3%,而且该方案安全性及耐受性良好[33]。另一项采用帕比司他联合标准诱导化疗方案治疗AML老年患者的临床研究发现,获得CR患者(n=8)组蛋白乙酰化升高水平显著高于难治性患者,提示组蛋白乙酰化升高水平与CR率显著相关,获得CR者在首次帕比司他给药后4、24 h时的标准化整体组蛋白乙酰化升高水平均较难治性患者(n=10)显著升高(P=0.034、0.019)[34]。Ⅱ期临床试验结果也表明,SAHA联合标准诱导化疗方案治疗初诊AML及高危MDS患者的CR/CRi率为85%(64/75),显示出良好的临床疗效[35]。丙戊酸联合全反式维A酸和阿糖胞苷治疗不能耐受标准化疗方案AML老年患者的临床研究表明,36例患者中,2例获得CR,9例血常规结果改善[36]。一项单臂Ⅰ/Ⅱ期临床研究结果显示,CDCAG(西达本胺+地西他滨+阿糖胞苷+阿柔比星+粒细胞集落刺激因子)方案治疗复发/难治性AML患者的CR/CRi率为46.2%(43/93)[37]。Wang等[21]采用西达本胺联合蒽环类药物治疗27例复发/难治性AML患者后,其中13例患者获得CR,1例获得部分缓解。上述研究结果说明,HDACI联合化疗对初治及难治性AML患者均有较好的疗效,具有提高AML患者的临床疗效的应用前景。

4 小结

HDACI可以通过表观遗传学修饰抑制AML细胞增殖、促进细胞凋亡与分化、影响自噬功能及调节骨髓微环境,从而杀伤AML细胞及增加其化疗敏感性。HDACI单药治疗AML临床疗效欠佳,但HDACI能够增强化疗药物、DNA去甲基化药物等的抗AML作用。因此,探索HDACI联合化疗提高AML患者临床疗效,并筛选适宜接受HDACI治疗的人群,可能使更多患者获益,该药具有一定的临床应用前景。

利益冲突
利益冲突

所有作者声明无利益冲突

5 参考文献
[1]
FalkenbergKJ, JohnstoneRW. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders[J]. Nat Rev Drug Discov, 201413(9): 673-691. DOI: 10.1038/nrd4360.
[2]
SmalleyJP, CowleySM, HodgkinsonJT. Bifunctional HDAC therapeutics: one drug to rule them all?[J]. Molecules, 2020, 25(19): 4394. DOI: 10.3390/molecules25194394.
[3]
SuraweeraA, O′ByrneKJ, RichardDJ. Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: achieving the full therapeutic potential of HDACi[J]. Front Oncol, 2018, 8: 92. DOI: 10.3389/fonc.2018.00092.
[4]
EckschlagerT, PlchJ, StiborovaM, et al. Histone deacetylase inhibitors as anticancer drugs[J]. Int J Mol Sci, 2017, 18(7): 1414. DOI: 10.3390/ijms18071414.
[5]
San José-EnérizE, Gimenez-CaminoN, AgirreX, et al. HDAC inhibitors in acute myeloid leukemia[J]. Cancers (Basel), 2019, 11(11): 1794. DOI: 10.3390/cancers11111794.
[6]
PetruccelliLA, Dupéré-RicherD, PetterssonF, et al. Vorinostat induces reactive oxygen species and DNA damage in acute myeloid leukemia cells[J]. PLoS One, 20116(6): e20987. DOI: 10.1371/journal.pone.0020987.
[7]
NebbiosoA, CarafaV, ConteM, et al. c-Myc modulation and acetylation is a key HDAC inhibitor target in cancer[J]. Clin Cancer Res, 2017, 23(10): 2542-2555. DOI: 10.1158/1078-0432.CCR-15-2388.
[8]
DavoodZA, ShamsiS, GhaediH, et al. Valproic acid may exerts its cytotoxic effect through rassf1a expression induction in acute myeloid leukemia[J]. Tumour Biol, 2016, 37(8): 11001-11006. DOI: 10.1007/s13277-016-4985-2.
[9]
Hernandez-ValladaresM, WangenR, AasebøE, et al. Proteomic studies of primary acute myeloid leukemia cells derived from patients before and during disease-stabilizing treatment based on all-trans retinoic acid and valproic acid[J]. Cancers (Basel), 202113(9): 2143. DOI: 10.3390/cancers13092143.
[10]
ZhuX, LiuX, ChengZ, et al. Quantitative analysis of global proteome and lysine acetylome reveal the differential impacts of VPA and SAHA on HL60 cells[J]. Sci Rep, 2016, 6: 19926. DOI: 10.1038/srep19926.
[11]
BotsM, VerbruggeI, MartinBP, et al. Differentiation therapy for the treatment of t(8;21) acute myeloid leukemia using histone deacetylase inhibitors[J]. Blood, 2014, 123(9): 1341-1352. DOI: 10.1182/blood-2013-03-488114.
[12]
LiuS, KlisovicRB, VukosavljevicT, et al. Targeting AML1/ETO-histone deacetylase repressor complex: a novel mechanism for valproic acid-mediated gene expression and cellular differentiation in AML1/ETO-positive acute myeloid leukemia cells[J]. J Pharmacol Exp Ther, 2007, 321(3): 953-960. DOI: 10.1124/jpet.106.118406.
[13]
SilvaG, CardosoBA, BeloH, et al. Vorinostat induces apoptosis and differentiation in myeloid malignancies: genetic and molecular mechanisms[J]. PLoS One, 2013, 8(1): e53766. DOI: 10.1371/journal.pone.0053766.
[14]
ZhaoS, GuoJ, ZhaoY, et al. Chidamide, a novel histone deacetylase inhibitor, inhibits the viability of MDS and AML cells by suppressing JAK2/STAT3 signaling[J]. Am J Transl Res, 2016, 8(7): 3169-3178.
[15]
LiY, ChenK, ZhouY, et al. A new strategy to target acute myeloid leukemia stem and progenitor cells using chidamide, a histone deacetylase inhibitor[J]. Curr Cancer Drug Targets, 2015, 15(6): 493-503. DOI: 10.2174/156800961506150805153230.
[16]
ZhaoJ, XieC, EdwardsH, et al. Histone deacetylases 1 and 2 cooperate in regulating BRCA1, CHK1, and RAD51 expression in acute myeloid leukemia cells[J]. Oncotarget, 2017, 8(4): 6319-6329. DOI: 10.18632/oncotarget.14062.
[17]
JinJ, LiX, GuoW, et al. Novel SAHA-bendamustine hybrid NL-101 in combination with daunorubicin synergistically suppresses acute myeloid leukemia[J]. Oncol Rep, 2020, 44(1): 273-282. DOI: 10.3892/or.2020.7591.
[18]
JinJ, MaoS, LiF, et al. A novel alkylating deacetylase inhibitor molecule EDO-S101 in combination with cytarabine synergistically enhances apoptosis of acute myeloid leukemia cells[J]. Med Oncol, 2019, 36(9): 77. DOI: 10.1007/s12032-019-1302-0.
[19]
YanB, ChenQ, ShimadaK, et al. Histone deacetylase inhibitor targets CD123/CD47-positive cells and reverse chemoresistance phenotype in acute myeloid leukemia[J]. Leukemia, 2019, 33(4): 931-944. DOI: 10.1038/s41375-018-0279-6.
[20]
LiY, WangY, ZhouY, et al. Cooperative effect of chidamide and chemotherapeutic drugs induce apoptosis by DNA damage accumulation and repair defects in acute myeloid leukemia stem and progenitor cells[J]. Clin Epigenetics, 2017, 9: 83. DOI: 10.1186/s13148-017-0377-8.
[21]
WangH, LiuYC, ZhuCY, et al. Chidamide increases the sensitivity of refractory or relapsed acute myeloid leukemia cells to anthracyclines via regulation of the HDAC3-AKT-P21-CDK2 signaling pathway[J]. J Exp Clin Cancer Res, 2020, 39(1): 278. DOI: 10.1186/s13046-020-01792-8.
[22]
JiangX, JiangL, ChengJ, et al. Inhibition of EZH2 by chidamide exerts antileukemia activity and increases chemosensitivity through Smo/Gli-1 pathway in acute myeloid leukemia[J]. J Transl Med, 2021, 19(1): 117. DOI: 10.1186/s12967-021-02789-3.
[23]
TorgersenML, EngedalN, BøeSO, et al. Targeting autophagy potentiates the apoptotic effect of histone deacetylase inhibitors in t(8;21) AML cells[J]. Blood, 2013, 122(14): 2467-2476. DOI: 10.1182/blood-2013-05-500629.
[24]
StankovMV, El KhatibM, Kumar ThakurB, et al. Histone deacetylase inhibitors induce apoptosis in myeloid leukemia by suppressing autophagy[J]. Leukemia, 2014, 28(3): 577-588. DOI: 10.1038/leu.2013.264.
[25]
HuangH, WenbingY, DongA, et al. Chidamide enhances the cytotoxicity of cytarabine and sorafenib in acute myeloid leukemia cells by modulating H3K9me3 and autophagy levels[J]. Front Oncol, 2019, 9: 1276. DOI: 10.3389/fonc.2019.01276.
[26]
LuX, OhataK, KondoY, et al. Hydroxyurea upregulates NKG2D ligand expression in myeloid leukemia cells synergistically with valproic acid and potentially enhances susceptibility of leukemic cells to natural killer cell-mediated cytolysis[J]. Cancer Sci, 2010, 101(3): 609-615. DOI: 10.1111/j.1349-7006.2009.01439.x.
[27]
RadpourR, StuckiM, RietherC, et al. Epigenetic silencing of immune-checkpoint receptors in bone marrow-infiltrating T cells in acute myeloid leukemia[J]. Front Oncol, 2021, 11: 663406. DOI: 10.3389/fonc.2021.663406.
[28]
KremerKN, DudakovicA, HessAD, et al. Histone deacetylase inhibitors target the leukemic microenvironment by enhancing a Nherf1-protein phosphatase 1α-TAZ signaling pathway in osteoblasts[J]. J Biol Chem, 2015, 290(49): 29478-29492. DOI: 10.1074/jbc.M115.668160.
[29]
SternerRM, KremerKN, Al-KaliA, et al. Histone deacetylase inhibitors reduce differentiating osteoblast-mediated protection of acute myeloid leukemia cells from cytarabine[J]. Oncotarget, 2017, 8(55): 94569-94579. DOI: 10.18632/oncotarget.21809.
[30]
SchaeferEW, Loaiza-BonillaA, JuckettM, et al. A phase 2 study of vorinostat in acute myeloid leukemia[J]. Haematologica, 2009, 94(10): 1375-1382. DOI: 10.3324/haematol.2009.009217.
[31]
SchlenkRF, KrauterJ, RaffouxE, et al. Panobinostat monotherapy and combination therapy in patients with acute myeloid leukemia: results from two clinical trials[J]. Haematologica, 2018, 103(1): e25-e28. DOI: 10.3324/haematol.2017.172411.
[32]
SchaeferEW, Loaiza-BonillaA, JuckettM, et al. A phase 2 study of vorinostat in acute myeloid leukemia[J]. Haematologica, 2009, 94(10): 1375-1382. DOI: 10.3324/haematol.2009.009217.
[33]
DeAngeloDJ, WalkerAR, SchlenkRF, et al. Safety and efficacy of oral panobinostat plus chemotherapy in patients aged 65 years or younger with high-risk acute myeloid leukemia[J]. Leuk Res, 2019, 85: 106197. DOI: 10.1016/j.leukres.2019.106197.
[34]
WieduwiltMJ, PawlowskaN, ThomasS, et al. Histone deacetylase inhibition with panobinostat combined with intensive induction chemotherapy in older patients with acute myeloid leukemia: phase Ⅰ study results[J]. Clin Cancer Res, 2019, 25(16): 4917-4923. DOI: 10.1158/1078-0432.CCR-19-0171.
[35]
Garcia-ManeroG, TambaroFP, BekeleNB, et al. Phase Ⅱ trial of vorinostat with idarubicin and cytarabine for patients with newly diagnosed acute myelogenous leukemia or myelodysplastic syndrome[J]. J Clin Oncol, 2012, 30(18): 2204-2210. DOI: 10.1200/JCO.2011.38.3265.
[36]
BruserudØTsykunovaG, Hernandez-ValladaresM, et al. Therapeutic use of valproic acid and all-trans retinoic acid in acute myeloid leukemia-literature review and discussion of possible use in relapse after allogeneic stem cell transplantation[J]. Pharmaceuticals (Basel), 2021, 14(5): 423. DOI: 10.3390/ph14050423.
[37]
WangL, LuoJ, ChenG, et al. Chidamide, decitabine, cytarabine, aclarubicin, and granulocyte colony-stimulating factor (CDCAG) in patients with relapsed/refractory acute myeloid leukemia: a single-arm, phase 1/2 study[J]. Clin Epigenetics, 2020, 12(1): 132. DOI: 10.1186/s13148-020-00923-4.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词