论著
ENGLISH ABSTRACT
2-脱氧葡萄糖逆转非小细胞肺癌细胞对奥希替尼继发性耐药的作用及机制
郝帅
卢从华
林采余
陈恒屹
李力
王玉波
封明霞
何勇
作者及单位信息
·
DOI: 10.3760/cma.j.issn.1001-0939.2019.03.010
The role and mechanism of 2-deoxyglucose in reversing osimertinib-acquired resistance of non-small cell lung cancer cell line
Hao Shuai
Lu Conghua
Lin Caiyu
Chen Hengyi
Li Li
Wang Yubo
Feng Mingxia
He Yong
Authors Info & Affiliations
Hao Shuai
Department of Respiratory Disease, Daping Hospital, Army Military Medical University, Chongqing 400042, China
Lu Conghua
Lin Caiyu
Chen Hengyi
Li Li
Wang Yubo
Feng Mingxia
He Yong
·
DOI: 10.3760/cma.j.issn.1001-0939.2019.03.010
1067
80
0
0
0
0
PDF下载
APP内阅读
摘要

目的探究2-脱氧葡萄糖(2-DG)逆转非小细胞肺癌细胞对奥希替尼继发性耐药的作用及机制。

方法将非小细胞肺癌(NSCLC)细胞株H1975(购自美国国家细胞库)通过体外诱导法处理后建立奥希替尼继发性耐药肺癌细胞株H1975-OR,用3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐(MTT)法、克隆形成实验、Ki67蛋白荧光染色、凋亡通路相关蛋白表达水平检测,评估细胞株H1975-OR对奥希替尼的耐药性;通过测定细胞株H1975和H1975-OR培养基上清液中乳酸含量确定细胞糖酵解水平;Western blot法检测糖酵解关键酶(己糖激酶2、葡萄糖转运子1、磷酸化丙酮酸激酶M2亚型)及凋亡相关蛋白(B淋巴细胞瘤-2、Bcl-2蛋白相互作用的细胞死亡调解子)的表达;分为空白对照、2-脱氧葡萄糖(4 mmol/L)单药处理、奥希替尼(3 μmol/L)单药处理、2-脱氧葡萄糖(4 mmol/L)+奥希替尼(3 μmol/L)联合处理组,用流式细胞分析仪检测药物处理后的细胞凋亡率,评估药物的促凋亡能力。采用SPSS 16.0统计软件,用独立 t检验对结果进行统计分析。

结果奥希替尼敏感细胞株H1975比奥希替尼继发性耐药细胞株H1975-OR的糖酵解水平低[乳酸产生量分别为(21.0±0.9)和(26.5±2.8)mmol/(L×10 4cells), P<0.05];细胞株H1975-OR经4 mmol/L的2-脱氧葡萄糖处理后可逆转其对奥希替尼的继发性耐药,对奥希替尼的IC 50值由(7.0±1.9)μmol/L降至(1.4±0.1)μmol/L,接近敏感细胞株H1975对奥希替尼的IC 50值(1.0±0.2)μmol/L;细胞株H1975-OR经2-脱氧葡萄糖+奥希替尼联合处理后细胞凋亡率为(26.7±2.4)%,显著高于对照组的(5.1±0.7)%、2-脱氧葡萄糖单药处理组的(6.1±2.5)%和奥希替尼单药处理组的(11.4±2.7)%(均 P<0.05);细胞株H1975-OR经2-脱氧葡萄糖+奥希替尼联合处理后,BIM蛋白表达为(177.8±28.1)%,显著高于对照组的(100.0±0)%( P<0.05);Bcl-2蛋白表达为(24.6±5.2)%,显著低于对照组的(100±0)%( P<0.05)。

结论2-脱氧葡萄糖可以逆转NSCLC细胞对奥希替尼继发性耐药,其机制可能与抑制细胞糖酵解进而诱导凋亡增加有关。

癌,非小细胞肺;脱氧葡萄糖;糖酵解
ABSTRACT

ObjectiveTo explore the role and mechanism of 2-deoxyglucose (2-dg) in reversing osimertinib- acquired resistance of non-small cell lung cancer(NSCLC)cell line.

MethodsThe NSCLC line H1975 (purchased from the American Type Culture Collection) was conducted by induction method in vitro to construct the osimertinib-resistance NSCLC cell line H1975-OR. The osimertinib-resistance of H1975-OR cell line was examined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, colony-formation assay, Ki67 incorporation assay and the expression of apoptosis-related protein. The glycolysis level was assayed by the lactic acid production measured in the culture medium supernatant of H1975 and H1975-OR. The expression of glycolysis key enzymes (HK2, GLUT1, P-PKM2) and apoptosis-related protein (BIM, Bcl-2) were detected by Western blot. The cells were divided into control group, 2-deoxyglucose (4 mmol/L) monotherapy group, osimertinib (3 μmol/L) monotherapy group and 2-deoxyglucose (4 mmol/L)+ osimertinib (3 μmol/L) combination therapy group, then the apoptosis rate of cells was measured by flow cytometry to evaluate the pro-apoptotic ability of drugs. Date were analyzed by Independent-Samples t-test using SPSS 16.0 statistical software.

ResultsThe glycolysis level of osimertinib-sensitive cell line H1975 was lower than that of osimertinib-resistance cell line H1975-OR [the yield of lactic acid, respectively, was (21.0±0.9) and (26.5±2.8) mmol·L -1·10 4cells -1, P<0.05]. The osimertinib- acquired resistance of H1975-OR could be reversed by 4 mmol/L 2-deoxyglucose(the IC 50 value of osimertinib in H1975-OR cell line decreased from (7.0±1.9) μmol/L to (1.4±0.1) μmol/L, which was close to the IC 50 value of osimertinib in H1975 cell line (1.0±0.2) μmol/L. The apoptosis rate of H1975-OR was significantly higher in 2-deoxyglucose + osimertinib combination therapy group (26.7±2.4)%, compared to control group (5.1±0.7)%, 2-deoxyglucose monotherapy group (6.1±2.5)% and osimertinib monotherapy group (11.4±2.7)%(all P<0.05). The expression of pro-apoptotic protein BIM in H1975-OR was significantly higher in 2-deoxyglucose+ osimertinib combination therapy group (177.8±28.1)% and the expression of anti-apoptotic protein Bcl-2 in H1975-OR was significantly lower in 2-deoxyglucose+ osimertinib combination therapy group (24.6±5.2)%, compared to control group (100±0)%, all P<0.05.

Conclusion2-deoxyglucose can reverse the acquired resistance of NSCLC cell line to osimertinib, which may be related to the inhibition of cell glycolysis and the induction of apoptosis.

Carcinoma,non-small-cell lung;Deoxyglucose;Glycolysis
He Yong, Email: mocdef.6ab218998gnoyeh
引用本文

郝帅,卢从华,林采余,等. 2-脱氧葡萄糖逆转非小细胞肺癌细胞对奥希替尼继发性耐药的作用及机制[J]. 中华结核和呼吸杂志,2019,42(3):198-205.

DOI:10.3760/cma.j.issn.1001-0939.2019.03.010

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
以表皮生长因子受体(epidermal growth factor receptor,EGFR)为靶点的表皮生长因子受体-酪氨酸激酶抑制剂(epidermal growth factor receptor-tyrosine kinase inhibitor,EGFR-TKI)已成为治疗晚期非小细胞肺癌(non-small cell lung cancer,NSCLC)的重要手段之一。三代EGFR-TKI药物奥希替尼的研发进一步延长了患者的生存期,并为克服一代EGFR-TKI继发性耐药提供了可能 [ 1 ]。但奥希替尼治疗后仍可能出现耐药,针对性新药的研发尚不充足 [ 2 ]。德国生物化学家奥托·沃伯格于1930年发现了肿瘤细胞的Warburg效应:正常组织细胞依靠线粒体氧化糖类分子释放出有用的能量,而大多数肿瘤细胞通过产能率相对较低的糖酵解作用为自身供能 [ 3 ];糖酵解作用通过改变细胞内环境引起肿瘤细胞凋亡率下降 [ 4 ];凋亡率下降则是肿瘤对包括靶向治疗在内的多种肿瘤治疗方式耐药的重要机制之一 [ 5 , 6 ]。文献报道,EGFR-TKI可抑制敏感NSCLC细胞的糖酵解水平 [ 7 ],且敏感NSCLC细胞经EGFR-TKI药物诱导耐药后糖酵解水平进一步增高 [ 8 , 9 ]、细胞凋亡率降低 [ 10 ],因此,通过抑制NSCLC细胞糖酵解进而增加细胞凋亡可能逆转其对奥希替尼的继发性耐药。
2-脱氧葡萄糖是一种人工合成的葡萄糖类似物,通过竞争性结合己糖激酶2(hexokinase 2,HK2)干扰细胞糖酵解途径,进而影响细胞的凋亡和增殖 [ 11 ]。本研究通过体外诱导法建立奥希替尼继发性耐药肺癌细胞株,探讨奥希替尼耐药与糖酵解水平的关系,为2-脱氧葡萄糖联合奥希替尼在临床的应用提供理论依据。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Bulbul A , Husain H . First-Line Treatment in EGFR Mutant Non-Small Cell Lung Cancer: Is There a Best Option?[J]. Front Oncol, 2018,8(4):94. DOI: 10.3389/fonc.2018.00094 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Tang Z , Lu J . Osimertinib resistance in non-small cell lung cancer: Mechanisms and therapeutic strategies[J]. Cancer Lett, 2018,420(4):242-246. DOI: 10.1016/j.canlet.2018.02.004 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Zhao Y , Butler EB , Tan M . Targeting cellular metabolism to improve cancer therapeutics[J]. Cell Death Dis, 2013,4(3):e532. DOI: 10.1038/cddis.2013.60 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Icard P , Shulman S , Farhat D ,et al. How the Warburg effect supports aggressiveness and drug resistance of cancer cells?[J]. Drug Resist Updat, 2018,38(3):1-11. DOI: 10.1016/j.drup.2018.03.001 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Yu D , Qin Y , Jun-Qiang L ,et al. CNPY2 enhances resistance to apoptosis induced by cisplatin via activation of NF-κB pathway in human non-small cell lung cancer[J]. Biomed Pharmacother, 2018,103(7):1658-1663. DOI: 10.1016/j.biopha.2018.04.123 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Morgillo F , Della Corte CM , Fasano M ,et al. Mechanisms of resistance to EGFR-targeted drugs: lung cancer[J]. ESMO Open, 2016,1(3):e60. DOI: 10.1136/esmoopen-2016-000060 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
De Rosa V , Iommelli F , Monti M ,et al. Reversal of Warburg Effect and Reactivation of Oxidative Phosphorylation by Differential Inhibition of EGFR Signaling Pathways in Non-Small Cell Lung Cancer[J]. Clin Cancer Res, 2015,21(22):5110-5120. DOI: 10.1158/1078-0432.CCR-15-0375 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Kunimasa K , Nagano T , Shimono Y ,et al. Glucose metabolism-targeted therapy and withaferin A are effective for epidermal growth factor receptor tyrosine kinase inhibitor-induced drug-tolerant persisters[J]. Cancer Sci, 2017,108(7):1368-1377. DOI: 10.1111/cas.13266 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Matthew J , Cath E , Darren C ,et al. Inhibition of oxidative phosphorylation suppresses the development of osimertinib resistance in a preclinical model of EGFR-driven lung adenocarcinoma[J]. Oncotarget, 2016,52(7):86313-86325. DOI: 10.18632/oncotarget.13388 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Shi P , Oh Y , Deng L ,et al. Overcoming Acquired Resistance to AZD9291, A Third-Generation EGFR Inhibitor, through Modulation of MEK/ERK-Dependent Bim and Mcl-1 Degradation[J]. Clin Cancer Res, 2017,23(21):6567-6579. DOI: 10.1158/1078-0432.CCR-17-1574 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Bost F , Decoux-Poullot A , Tanti JF ,et al. Energy disruptors: rising stars in anticancer therapy?[J]. Oncogenesis, 2016,5(1):e188. DOI: 10.1038/oncsis.2015.46 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Lopez Sambrooks C , Baro M , Quijano A ,et al. Oligosaccharyltransferase Inhibition Overcomes Therapeutic Resistance to EGFR Tyrosine Kinase Inhibitors[J]. Cancer Res, 2018,78(17):5094-5106. DOI: 10.1158/0008-5472.CAN-18-0505 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Weng C , Chen L , Lin Y ,et al. Epithelial-mesenchymal transition (EMT) beyond EGFR mutations per se is a common mechanism for acquired resistance to EGFR TKI[J]. Oncogene, 2018,15(8):1476-5594. DOI: 10.1038/s41388-018-0454-2 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Kita K , Arai S , Nishiyama A ,et al. In vivo imaging xenograft models for the evaluation of anti-brain tumor efficacy of targeted drugs[J]. Cancer Med, 2017,6(12):2972-2983. DOI: 10.1002/cam4.1255 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Li L , Han R , Xiao H ,et al. Metformin Sensitizes EGFR-TKI-Resistant Human Lung Cancer Cells In Vitro and In Vivo through Inhibition of IL-6 Signaling and EMT Reversal[J]. Clin Cancer Res, 2014,20(10):2714-2726. DOI: 10.1158/1078-0432.CCR-13-2613 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Soria JC , Ohe Y , Vansteenkiste J ,et al. Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer[J]. N Engl J Med, 2018,378(2):113-125. DOI: 10.1056/NEJMoa1713137 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Keating E , Martel F . Antimetabolic Effects of Polyphenols in Breast Cancer Cells: Focus on Glucose Uptake and Metabolism[J]. Front Nutr, 2018,5(4):25. DOI: 10.3389/fnut.2018.00025 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Liu W , Kang L , Han J ,et al. miR-342-3p suppresses hepatocellular carcinoma proliferation through inhibition of IGF-1R-mediated Warburg effect[J]. Onco Targets Ther, 2018,11(3):1643-1653. DOI: 10.2147/OTT.S161586 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Wang F , Liu H , Hu L ,et al. The Warburg effect in human pancreatic cancer cells triggers cachexia in athymic mice carrying the cancer cells[J]. BMC Cancer, 2018,18(1):360. DOI: 10.1186/s12885-018-4271-3 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Zhang D , Li J , Wang F ,et al. 2-Deoxy-D-glucose targeting of glucose metabolism in cancer cells as a potential therapy[J]. Cancer Lett, 2014,355(2):176-183. DOI: 10.1016/j.canlet.2014.09.003 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Matsuura K , Canfield K , Feng W ,et al. Metabolic Regulation of Apoptosis in Cancer[J]. Int Rev Cell Mol Biol, 2016,327:43-87. DOI: 10.1016/bs.ircmb.2016.06.006 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Faubert B , Boily G , Izreig S ,et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo[J]. Cell Metab, 2013,17(1):113-124. DOI: 10.1016/j.cmet.2012.12.001 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Dewaal D , Nogueira V , Terry AR ,et al. Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin[J]. Nat Commun, 2018,9(1):446. DOI: 10.1038/s41467-017-02733-4 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Liu Y , Tong L , Luo Y ,et al. Resveratrol inhibits the proliferation and induces the apoptosis in ovarian cancer cells via inhibiting glycolysis and targeting AMPK/mTOR signaling pathway[J]. J Cell Biochem, 2018,119(7):6162-6172. DOI: 10.1002/jcb.26822 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
何勇,Email: mocdef.6ab218998gnoyeh
B
所有作者均声明不存在利益冲突
C
国家自然科学基金面上项目 (81672284,81472189)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号