述评
ENGLISH ABSTRACT
人工智能在病理性近视眼底资料解析中的应用和展望
许迅
余奇
作者及单位信息
·
DOI: 10.3760/cma.j.issn.1005-1015.2019.05.001
Application and prospect of artificial intelligence in the analysis of fundus images of pathological myopia
Xu Xun
Yu Qi
Authors Info & Affiliations
Xu Xun
Department of Ophthalmology, The First People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
Yu Qi
·
DOI: 10.3760/cma.j.issn.1005-1015.2019.05.001
620
208
0
0
2
0
PDF下载
APP内阅读
摘要

病理性近视(PM)是眼科学领域最具研究挑战的临床病种之一,其疾病的准确定义、标准分级、发生演进机制、预防治疗策略都尚在探索研究中。人工智能的发展和应用为PM眼底病相关资料的解析提供了强力工具。通过PM患者眼底影像资料标准化采集辅助、眼底生理结构的自动化分割和定量分析、PM经典病灶的自动化检测、分析和PM临床诊疗决策辅助多个方面,人工智能使得临床医师在PM的临床工作和临床研究中获得更多、更精确的数据信息,帮助眼科医师深入理解PM的发生及演进过程。

近视,退行性;人工智能;述评
ABSTRACT

Pathological myopia is one of the most challenging clinical diseases in the field of ophthalmology. The accurate definition, standard classification, disease evolution mechanism and disease prevention and treatment strategies are still under investigation. The development and application of artificial intelligence provides a powerful tool for the analysis of pathological myopia related data. More and more accurate data information is obtained in the clinical work and clinical research of pathological myopia through the standardized collection and acquisition of the fundus image data, the automatic segmentation and quantitative analysis of the fundus physiological structure, the automatic detection and analysis of the pathological myopia classic lesions and the clinical diagnosis and treatment decision aid, which helps ophthalmologists to understand the pathogenesis and evolution of pathological myopia.

Myopia, degenerative;Artificial intelligence;Editorial
Xu Xun, Email: nc.defudabe.utjsnuxuxrd
引用本文

许迅,余奇. 人工智能在病理性近视眼底资料解析中的应用和展望[J]. 中华眼底病杂志,2019,35(5):427-431.

DOI:10.3760/cma.j.issn.1005-1015.2019.05.001

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
近年来,随着近视患者在全球范围尤其是东亚和东南亚地区蔓延增长,高度近视及病理性近视(PM)患病率也同样逐年递增。近期荟萃分析研究数据预测,至2050年,全球人口近视的患病率将达到50%,而高度近视的患病率也将达到10%。对于PM及其相关的不可逆视力损伤的防控已经成为重要的国际公共卫生议题 [ 1 , 2 ]
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Ohno-Matsui K , Ikuno Y , Lai TYY ,et al. Updates of pathologic myopia[J]. Prog Retin Eye Res, 2016,52:156-187. DOI: 10.1016/j.preteyeres.2015.12.001 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
谢红莉,谢作揩,叶景,. 我国青少年近视现患率及相关因素分析[J]. 中华医学杂志, 2010,90(7):439-442. DOI: 10.3760/cma.j.issn.0376-2491.2010.07.003 .
返回引文位置Google Scholar
百度学术
万方数据
Xie HL , Xie ZK , Ye J ,et al. Analysis of correlative factors and prevalence on China's youth myopia[J]. Natl Med J China, 2010,90(7):439-442. DOI: 10.3760/cma.j.issn.0376-2491.2010.07.003 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[3]
Cheung CMG , Arnold JJ , Holz FG ,et al. Myopic choroidal neovascularization: review, guidance, and consensus statement on management[J]. Ophthalmology, 2017,124(11):1690-1711. DOI: 10.1016/j.ophtha.2017.04.028 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
徐捷,徐亮. 近视防控的六维度评估及防控模式[J]. 中华眼视光学与视觉科学杂志, 2018,20(3):129-132. DOI: 10.3760/cma.j.issn.1674-845X.2018.03.001 .
返回引文位置Google Scholar
百度学术
万方数据
Xu J , Xu L . Six dimensional evaluation for myopia prevention and control[J]. Chin J Optom Ophthalmol Vis Sci, 2018,20(3):129-132. DOI: 10.3760/cma.j.issn.1674-845X.2018.03.001 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[5]
Gao LQ , Liu W , Liang YB ,et al. Prevalence and characteristics of myopic retinopathy in a rural Chinese adult population: the Handan Eye Study[J]. Arch Ophthalmol, 2011,129(9):1199-1204. DOI: 10.1001/archophthalmol.2011.230 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Ohno-Matsui K , Kawasaki R , Jonas JB ,et al. International photographic classification and grading system for myopic maculopathy[J]. Am J Ophthalmol, 2015,159(5):877-883. DOI: 10.1016/j.ajo.2015.01.022 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Ruiz-Medrano J , Montero JA , Flores-Moreno I ,et al. Myopic maculopathy: current status and proposal for a new classification and grading system (ATN)[J]. Prog Retin Eye Res, 2019,69:80-115. DOI: 10.1016/j.preteyeres.2018.10.005 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
LeCun Y , Bengio Y , Hinton G . Deep learning[J]. Nature, 2015,521(7553):436-444. DOI: 10.1038/nature14539 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Long E , Lin H , Liu Z ,et al. An artificial intelligence platform for the multihospital collaborative management of congenital cataracts[J/OL]. Nature Biomedical Engineering, 2017,1(2):0024[2017-01-30]. https://www.nature.com/articles/s41551-016-0024.
返回引文位置Google Scholar
百度学术
万方数据
[10]
Wong TY , Bressler NM . Artificial intelligence with deep learning technology looks into diabetic retinopathy screening[J]. JAMA, 2016,316(22):2366-2367. DOI: 10.1001/jama.2016.17563 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Lancet T . Artificial intelligence in health care: within touching distance[J/OL]. Lancet, 2018,390(10114):2739[2018-12-23]. https://linkinghub.elsevier.com/retrieve/pii/S0140-6736(17)31540-4. DOI: 10.1016/S0140-6736(17)31540-4 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Gulshan V , Peng L , Coram M ,et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016,316(22):2402-2410. 10.1001/jama.2016.17216 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Poplin R , Varadarajan AV , Blumer K ,et al. Predicting cardiovascular risk factors from retinal fundus photographs using deep learning[J]. Nature Biomedical Engineering, 2018,2(3):158-164. DOI: 10.1038/s41551-018-0195-0 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Kemany DS , Goldbaum M , Cai W ,et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 2018,172(5):1122-1131. DOI: 10.1016/j.cell.2018.02.010 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Burlina PM , Joshi N , Pekala M ,et al. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks[J]. JAMA Ophthalmol, 2018,136(12):1359-1366. DOI: 10.1001/jamaophthalmol.2018.4118 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Burlina PM , Joshi N , Pacheco D ,et al. Use of deep learning for detailed severity characterization and estimation of 5-year risk among patients with age-related macular degeneration[J]. JAMA Ophthalmol, 2017,135(11):1170-1176. DOI: 10.1001/jamaophthalmol.2018.4118 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Akram S , Javed MY , Hussain A ,et al. Intensity-based statistical features for classification of lungs CT scan nodules using artificial intelligence techniques[J]. Journal of Experimental & Theoretical Artificial Intelligence, 2015,27(6):737-751.
返回引文位置Google Scholar
百度学术
万方数据
[18]
Chen SJ , Cheng CY , Li AF ,et al. Prevalence and associated risk factors of myopic maculopathy in elderly Chinese: the Shihpai eye study[J]. Invest Ophthalmol Vis Sci, 2012,53(8):4868-4873. DOI: 10.1167/iovs.12-9919 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
邓骏杰,何鲜桂,许迅. 高度近视巩膜厚度研究现状与进展[J]. 中华眼底病杂志, 2017,33(1):87-89. DOI: 10.3760/cma.j.issn.1005-1015.2017.01.028 .
返回引文位置Google Scholar
百度学术
万方数据
Deng JJ , He XG , Xu X . Scleral thickness in high myopic eyes[J]. Chin J Ocul Fundus Dis, 2017,33(1):87-89. DOI: 10.3760/cma.j.issn.1005-1015.2017.01.028 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[20]
El Matri L , Bouladi M , Chebil A ,et al. Choroidal thickness measurement in highly myopic eyes using SD-OCT[J]. Ophthalmic Surg Lasers Imaging, 2012,43(6Suppl):S38-43. DOI: 10.3928/15428877-20121001-02 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Xiong S , He X , Deng J ,et al. Choroidal thickness in 3001 Chinese children aged 6 to 19 years using swept-source OCT[J/OL]. Sci Rep, 2017,7:45059[2017-03-22]. http://dx.doi.org/10.1038/srep45059. DOI: 10.1038/srep45059 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Hayashi K , Ohno-Matsui K , Shimada N ,et al. Long-term pattern of progression of myopic maculopathy[J]. Ophthalmology, 2010,117(8):1595-1611. DOI: 10.1016/j.ophtha.2009.11.003 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Hayashi K , Ohno-Matsui K , Yoshida T ,et al. Characteristics of patients with a favorable natural course of myopic choroidal neovascularization[J]. Graefe's Arch Clin Exp Ophthalmol, 2005,243(1):13-19. DOI: 10.1007/s00417-004-0960-5 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Jonas JB , Wang YX , Zhang Q ,et al. Parapapillary gamma zone and axial elongation-associated optic disc rotation: the Beijing Eye Study[J]. Invest Ophthalmol Vis Sci, 2016,57(2):396-402. DOI: 10.1167/iovs.15-18263 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Battaglia PM , Iacono P , Romano F ,et al. Fluorescein leakage and optical coherence tomography features of choroidal neovascularization secondary to pathologic myopia[J]. Invest Ophthalmol Vis Sci, 2018,59(7):3175-3180. DOI: 10.1167/iovs.17-23640 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Antony BJ , Abràmoff MD , Harper MM ,et al. A combined machine-learning and graph-based framework for the segmentation of retinal surfaces in SD-OCT volumes[J]. Biomed Opt Express, 2013,4(12):2712-2728. DOI: 10.1364/BOE.4.002712 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Liu X , Bi L , Xu Y . Robust deep learning method for choroidal vessel segmentation on swept source optical coherence tomography images[J]. Biomed Opt Express, 2019,10(4):1601-1612. DOI: 10.1364/BOE.10.001601 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Cheng J , Liu J , Wong DWK ,et al. Automatic optic disc segmentation with peripapillary atrophy elimination[J]. Conf Proc IEEE Eng Med Biol Soc, 2011,2011:6224-6227. DOI: 10.1109/IEMBS.2011.6091537 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Xu Y , Yan K , Kim J ,et al. Dual-stage deep learning framework for pigment epithelium detachment segmentation in polypoidal choroidal vasculopathy[J]. Biomed Opt Express, 2017,8(9):4061-4076. DOI: 10.1364/BOE.8.004061 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Wolf-Dieter V , Waldstein SM , Gerendas BS ,et al. Analyzing and predicting visual acuity outcomes of anti-VEGF therapy by a longitudinal mixed effects model of imaging and clinical data[J]. Invest Ophthalmol Vis Sci, 2017,58(10):4173-4181. DOI: 10.1167/iovs.17-21878 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Rohm M , Tresp V , Müller M ,et al. Predicting visual acuity by using machine learning in patients treated for neovascular age-related macular degeneration[J]. Ophthalmology, 2018,125(7):1028-1036. DOI: 10.1016/j.ophtha.2017.12.034 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Schmidt-Erfurth U , Sadeghipour A , Gerendas B ,et al. Artificial intelligence in retina[J]. Prog Retin Eye Res, 2018,67:1-29. DOI: 10.1016/j.preteyeres.2018.07.004 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
许迅,Email: nc.defudabe.utjsnuxuxrd
B
所有作者均声明不存在利益冲突
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号