首页 中华结核和呼吸杂志 2020年43卷03期 白细胞介素33在支气管哮喘中的作用及其研究现状
中华结核和呼吸杂志
期刊首页
过刊列表
高级检索
稿件发表
• 综述 •
ENGLISH ABSTRACT
白细胞介素33在支气管哮喘中的作用及其研究现状
作者及单位信息
·
DOI: 10.3760/cma.j.issn.1001-0939.2020.03.024
The role of interleukin 33 in bronchial asthma and its current research status
Liu Yahui
Huang Chunrong
Shi Guo Chao
Authors Info & Affiliations
Liu Yahui
Huang Chunrong
Shi Guo Chao
·
DOI: 10.3760/cma.j.issn.1001-0939.2020.03.024
1135
302
0
0
5
0
扫描转手机阅读
下载中华医学期刊APP阅读更流畅 体验更丰富
PDF下载
APP内阅读
摘要
支气管哮喘(哮喘)是一种复杂的异质性疾病,多以2型反应为主。近年来随着科技发展人们对哮喘的病理生理学机制有了长足的认识,气道上皮细胞来源的细胞因子白细胞介素33(interleukin 33,IL-33)在哮喘的发生和发展中发挥重要作用。本文立足于IL-33,结合其本身的生物学特点和发挥作用的靶细胞,综述IL-33在哮喘的气道炎症和气道重塑中的作用。
引用本文
柳亚慧,黄春容,时国朝. 白细胞介素33在支气管哮喘中的作用及其研究现状[J]. 中华结核和呼吸杂志,2020,43(03):250-255.
DOI:10.3760/cma.j.issn.1001-0939.2020.03.024PERMISSIONS
Request permissions for this article from CCC.
评价本文
*以上评分为匿名评价
本文评分
0分
[累计0个]
向我们报错
版权归中华医学会所有。
未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。
哮喘是最常见的慢性气道疾病之一,我国哮喘患病率仍逐年上升
[
1
]。气道上皮是人体抵御外界刺激的第一道屏障,在哮喘的病理生理过程中发挥关键作用。哮喘患者上皮细胞受到刺激后可诱导2型反应,导致慢性气道炎症与气道重塑。气道上皮诱导2型反应依赖于上皮细胞分泌的细胞因子,如IL-33、IL-25、胸腺基质淋巴细胞生成素(thymic stromal lymphopoietin,TSLP)等。现已证实IL-33是一种强大的炎性因子,IL-33与其受体结合后,使靶细胞释放大量趋化因子和细胞因子,导致2型反应,在哮喘等过敏性疾病中发挥重要作用。本文从IL-33的结构特点、表达与分泌、活性调节、受体与信号通路、靶细胞及临床应用等方面综述IL-33在支气管哮喘中的作用。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
已是订阅账户?
登录
参考文献
[1]
中华医学会儿科学分会呼吸学组,《中华儿科杂志》编辑委员会. 儿童支气管哮喘诊断与防治指南(2016年版)[J]. 中华儿科杂志, 2016,54(3):167-181. DOI:
10.3760/cma.j.issn.0578-1310.2016.03.003
.
[2]
Baekkevold ES , Roussigné M , Yamanaka T ,et al. Molecular characterization of NF-HEV, a nuclear factor preferentially expressed in human high endothelial venules[J]. Am J Pathol, 2003,163(1):69-79. DOI:
10.1016/S0002-9440(10)63631-0
.
[3]
Schmitz J , Owyang A , Oldham E ,et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines[J]. Immunity, 2005,23(5):479-490. DOI:
10.1016/j.immuni.2005.09.015
.
[4]
Gordon ED , Simpson LJ , Rios CL ,et al. Alternative splicing of interleukin-33 and type 2 inflammation in asthma[J]. Proc Natl Acad Sci U S A, 2016,113(31):8765-8770. DOI:
10.1073/pnas.1601914113
.
[5]
Roussel L , Erard M , Cayrol C ,et al. Molecular mimicry between IL-33 and KSHV for attachment to chromatin through the H2A-H2B acidic pocket[J]. EMBO Rep, 2008,9(10):1006-1012. DOI:
10.1038/embor.2008.145
.
[6]
Lefrançais E , Duval A , Mirey E ,et al. Central domain of IL-33 is cleaved by mast cell proteases for potent activation of group-2 innate lymphoid cells[J]. Proc Natl Acad Sci U S A, 2014,111(43):15502-15507. DOI:
10.1073/pnas.1410700111
.
[7]
Lefrançais E , Roga S , Gautier V ,et al. IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G[J]. Proc Natl Acad Sci U S A, 2012,109(5):1673-1678. DOI:
10.1073/pnas.1115884109
.
[8]
Liew FY , Girard JP , Turnquist HR . Interleukin-33 in health and disease[J]. Nat Rev Immunol, 2016,16(11):676-689. DOI:
10.1038/nri.2016.95
.
[9]
Carriere V , Roussel L , Ortega N ,et al. IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo[J]. Proc Natl Acad Sci U S A, 2007,104(1):282-287. DOI:
10.1073/pnas.0606854104
.
[10]
Cayrol C , Girard JP . Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family[J]. Immunol Rev, 2018,281(1):154-168. DOI:
10.1111/imr.12619
.
[11]
Johansson K , McSorley HJ . Interleukin-33 in the developing lung-Roles in asthma and infection[J]. Pediatr Allergy Immunol, 2019,30(5):503-510. DOI:
10.1111/pai.13040
.
[12]
Travers J , Rochman M , Miracle CE ,et al. Chromatin regulates IL-33 release and extracellular cytokine activity[J]. Nat Commun, 2018,9(1):3244. DOI:
10.1038/s41467-018-05485-x
.
[13]
Drake LY , Kita H . IL-33: biological properties, functions, and roles in airway disease[J]. Immunol Rev, 2017,278(1):173-184. DOI:
10.1111/imr.12552
.
[14]
Bessa J , Meyer CA , de Vera Mudry MC ,et al. Altered subcellular localization of IL-33 leads to non-resolving lethal inflammation[J]. J Autoimmun, 2014,55:33-41. DOI:
10.1016/j.jaut.2014.02.012
.
[15]
Hara K , Iijima K , Elias MK ,et al. Airway uric acid is a sensor of inhaled protease allergens and initiates type 2 immune responses in respiratory mucosa[J]. J Immunol, 2014,192(9):4032-4042. DOI:
10.4049/jimmunol.1400110
.
[16]
Kouzaki H , Iijima K , Kobayashi T ,et al. The danger signal, extracellular ATP, is a sensor for an airborne allergen and triggers IL-33 release and innate Th2-type responses[J]. J Immunol, 2011,186(7):4375-4387. DOI:
10.4049/jimmunol.1003020
.
[17]
Snelgrove RJ , Gregory LG , Peiró T ,et al. Alternaria-derived serine protease activity drives IL-33-mediated asthma exacerbations[J]. J Allergy Clin Immunol, 2014,134(3):583-592.e6. DOI:
10.1016/j.jaci.2014.02.002
.
[18]
Hristova M , Habibovic A , Veith C ,et al. Airway epithelial dual oxidase 1 mediates allergen-induced IL-33 secretion and activation of type 2 immune responses[J]. J Allergy Clin Immunol, 2016,137(5):1545-1556.e11. DOI:
10.1016/j.jaci.2015.10.003
.
[19]
Kakkar R , Hei H , Dobner S ,et al. Interleukin 33 as a mechanically responsive cytokine secreted by living cells[J]. J Biol Chem, 2012,287(9):6941-6948. DOI:
10.1074/jbc.M111.298703
.
[20]
Ni Y , Hao J , Hou X ,et al. Dephosphorylated Polymerase I and Transcript Release Factor Prevents Allergic Asthma Exacerbations by Limiting IL-33 Release[J]. Front Immunol, 2018,9:1422. DOI:
10.3389/fimmu.2018.01422
.
[21]
Cayrol C , Girard JP . The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1[J]. Proc Natl Acad Sci U S A, 2009,106(22):9021-9026. DOI:
10.1073/pnas.0812690106
.
[22]
Talabot-Ayer D , Lamacchia C , Gabay C ,et al. Interleukin-33 is biologically active independently of caspase-1 cleavage[J]. J Biol Chem, 2009,284(29):19420-19426. DOI:
10.1074/jbc.M901744200
.
[23]
Lüthi AU , Cullen SP , McNeela EA ,et al. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases[J]. Immunity, 2009,31(1):84-98. DOI:
10.1016/j.immuni.2009.05.007
.
[24]
Gadani SP , Walsh JT , Smirnov I ,et al. The glia-derived alarmin IL-33 orchestrates the immune response and promotes recovery following CNS injury[J]. Neuron, 2015,85(4):703-709. DOI:
10.1016/j.neuron.2015.01.013
.
[25]
Molofsky AB , Savage AK , Locksley RM . Interleukin-33 in Tissue Homeostasis, Injury, and Inflammation[J]. Immunity, 2015,42(6):1005-1019. DOI:
10.1016/j.immuni.2015.06.006
.
[26]
Hardman C , Ogg G . Interleukin-33, friend and foe in type-2 immune responses[J]. Curr Opin Immunol, 2016,42:16-24. DOI:
10.1016/j.coi.2016.05.004
.
[27]
Castanhinha S , Sherburn R , Walker S ,et al. Pediatric severe asthma with fungal sensitization is mediated by steroid-resistant IL-33[J]. J Allergy Clin Immunol, 2015,136(2):312-322.e7. DOI:
10.1016/j.jaci.2015.01.016
.
[28]
Christianson CA , Goplen NP , Zafar I ,et al. Persistence of asthma requires multiple feedback circuits involving type 2 innate lymphoid cells and IL-33[J]. J Allergy Clin Immunol, 2015,136(1):59-68.e14. DOI:
10.1016/j.jaci.2014.11.037
.
[29]
Préfontaine D , Nadigel J , Chouiali F ,et al. Increased IL-33 expression by epithelial cells in bronchial asthma[J]. J Allergy Clin Immunol, 2010,125(3):752-754. DOI:
10.1016/j.jaci.2009.12.935
.
[30]
Saglani S , Lui S , Ullmann N ,et al. IL-33 promotes airway remodeling in pediatric patients with severe steroid-resistant asthma[J]. J Allergy Clin Immunol, 2013,132(3):676-685.e13. DOI:
10.1016/j.jaci.2013.04.012
.
[31]
Bønnelykke K , Sleiman P , Nielsen K ,et al. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations[J]. Nat Genet, 2014,46(1):51-55. DOI:
10.1038/ng.2830
.
[32]
Moffatt MF , Gut IG , Demenais F ,et al. A large-scale, consortium-based genomewide association study of asthma[J]. N Engl J Med, 2010,363(13):1211-1221. DOI:
10.1056/NEJMoa0906312
.
[33]
Smith D , Helgason H , Sulem P ,et al. A rare IL33 loss-of-function mutation reduces blood eosinophil counts and protects from asthma[J]. PLoS Genet, 2017,13(3):e1006659. DOI:
10.1371/journal.pgen.1006659
.
[34]
Aron JL , Akbari O . Regulatory T cells and type 2 innate lymphoid cell-dependent asthma[J]. Allergy, 2017,72(8):1148-1155. DOI:
10.1111/all.13139
.
[35]
Nussbaum JC , Van Dyken SJ , von Moltke J ,et al. Type 2 innate lymphoid cells control eosinophil homeostasis[J]. Nature, 2013,502(7470):245-248. DOI:
10.1038/nature12526
.
[36]
Gasteiger G , Fan X , Dikiy S ,et al. Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs[J]. Science, 2015,350(6263):981-985. DOI:
10.1126/science.aac9593
.
[37]
Martinez-Gonzalez I , Mathä L , Steer CA ,et al. Allergen-Experienced Group 2 Innate Lymphoid Cells Acquire Memory-like Properties and Enhance Allergic Lung Inflammation[J]. Immunity, 2016,45(1):198-208. DOI:
10.1016/j.immuni.2016.06.017
.
[38]
Cohn L , Elias JA , Chupp GL . Asthma: mechanisms of disease persistence and progression[J]. Annu Rev Immunol, 2004,22:789-815. DOI:
10.1146/annurev.immunol.22.012703.104716
.
[39]
Rosenberg HF , Dyer KD , Foster PS . Eosinophils: changing perspectives in health and disease[J]. Nat Rev Immunol, 2013,13(1):9-22. DOI:
10.1038/nri3341
.
[40]
Ingram JL , Kraft M . IL-13 in asthma and allergic disease: asthma phenotypes and targeted therapies[J]. J Allergy Clin Immunol, 2012,130(4):829-842; quiz 843-844. DOI:
10.1016/j.jaci.2012.06.034
.
[41]
Smithgall MD , Comeau MR , Yoon BR ,et al. IL-33 amplifies both Th1-and Th2-type responses through its activity on human basophils, allergen-reactive Th2 cells, iNKT and NK cells[J]. Int Immunol, 2008,20(8):1019-1030. DOI:
10.1093/intimm/dxn060
.
[42]
Blom L , Poulsen LK . IL-1 family members IL-18 and IL-33 upregulate the inflammatory potential of differentiated human Th1 and Th2 cultures[J]. J Immunol, 2012,189(9):4331-4337. DOI:
10.4049/jimmunol.1103685
.
[43]
Endo Y , Hirahara K , Iinuma T ,et al. The interleukin-33-p38 kinase axis confers memory T helper 2 cell pathogenicity in the airway[J]. Immunity, 2015,42(2):294-308. DOI:
10.1016/j.immuni.2015.01.016
.
[44]
Komai-Koma M , Xu D , Li Y ,et al. IL-33 is a chemoattractant for human Th2 cells[J]. Eur J Immunol, 2007,37(10):2779-2786. DOI:
10.1002/eji.200737547
.
[45]
Guo L , Huang Y , Chen X ,et al. Innate immunological function of TH2 cells in vivo[J]. Nat Immunol, 2015,16(10):1051-1059. DOI:
10.1038/ni.3244
.
[46]
Louten J , Rankin AL , Li Y ,et al. Endogenous IL-33 enhances Th2 cytokine production and T-cell responses during allergic airway inflammation[J]. Int Immunol, 2011,23(5):307-315. DOI:
10.1093/intimm/dxr006
.
[47]
Saluja R , Zoltowska A , Ketelaar ME ,et al. IL-33 and Thymic Stromal Lymphopoietin in mast cell functions[J]. Eur J Pharmacol, 2016,778:68-76. DOI:
10.1016/j.ejphar.2015.04.047
.
[48]
Saluja R , Ketelaar ME , Hawro T ,et al. The role of the IL-33/IL-1RL1 axis in mast cell and basophil activation in allergic disorders[J]. Mol Immunol, 2015,63(1):80-85. DOI:
10.1016/j.molimm.2014.06.018
.
[49]
Joulia R , L′Faqihi FE , Valitutti S ,et al. IL-33 fine tunes mast cell degranulation and chemokine production at the single-cell level[J]. J Allergy Clin Immunol, 2017,140(2):497-509.e10. DOI:
10.1016/j.jaci.2016.09.049
.
[50]
Bochner BS , Gleich GJ . What targeting eosinophils has taught us about their role in diseases[J]. J Allergy Clin Immunol, 2010,126(1):16-25; quiz 26-27. DOI:
10.1016/j.jaci.2010.02.026
.
[51]
de Groot JC , Storm H , Amelink M ,et al. Clinical profile of patients with adult-onset eosinophilic asthma[J]. ERJ Open Res, 2016,2(2). DOI:
10.1183/23120541.00100-2015
.
[52]
Bel EH , Ten Brinke A . New Anti-Eosinophil Drugs for Asthma and COPD: Targeting the Trait![J]. Chest, 2017,152(6):1276-1282. DOI:
10.1016/j.chest.2017.05.019
.
[53]
Chung KF . Targeting the interleukin pathway in the treatment of asthma[J]. Lancet, 2015,386(9998):1086-1096. DOI:
10.1016/S0140-6736(15)00157-9
.
[54]
Johnston LK , Hsu CL , Krier-Burris RA ,et al. IL-33 Precedes IL-5 in Regulating Eosinophil Commitment and Is Required for Eosinophil Homeostasis[J]. J Immunol, 2016,197(9):3445-3453. DOI:
10.4049/jimmunol.1600611
.
[55]
Oboki K , Ohno T , Kajiwara N ,et al. IL-33 is a crucial amplifier of innate rather than acquired immunity[J]. Proc Natl Acad Sci U S A, 2010,107(43):18581-18586. DOI:
10.1073/pnas.1003059107
.
[56]
Sjöberg LC , Nilsson AZ , Lei Y ,et al. Interleukin 33 exacerbates antigen driven airway hyperresponsiveness, inflammation and remodeling in a mouse model of asthma[J]. Sci Rep, 2017,7(1):4219. DOI:
10.1038/s41598-017-03674-0
.
[57]
Cherry WB , Yoon J , Bartemes KR ,et al. A novel IL-1 family cytokine, IL-33, potently activates human eosinophils[J]. J Allergy Clin Immunol, 2008,121(6):1484-1490. DOI:
10.1016/j.jaci.2008.04.005
.
[58]
Suzuki Y , Wakahara K , Nishio T ,et al. Airway basophils are increased and activated in eosinophilic asthma[J]. Allergy, 2017,72(10):1532-1539. DOI:
10.1111/all.13197
.
[59]
Brooks CR , van Dalen CJ , Hermans IF ,et al. Sputum basophils are increased in eosinophilic asthma compared with non-eosinophilic asthma phenotypes[J]. Allergy, 2017,72(10):1583-1586. DOI:
10.1111/all.13185
.
[60]
Fux M , von Garnier C . Sputum basophils and asthma diagnosis: dawn of a new era?[J]. Allergy, 2017,72(10):1437-1439. DOI:
10.1111/all.13214
.
[61]
Suzukawa M , Iikura M , Koketsu R ,et al. An IL-1 cytokine member, IL-33, induces human basophil activation via its ST2 receptor[J]. J Immunol, 2008,181(9):5981-5989. DOI:
10.4049/jimmunol.181.9.5981
.
[62]
Kurowska-Stolarska M , Stolarski B , Kewin P ,et al. IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation[J]. J Immunol, 2009,183(10):6469-6477. DOI:
10.4049/jimmunol.0901575
.
[63]
Newcomb DC , Peebles RS Jr. Th17-mediated inflammation in asthma[J]. Curr Opin Immunol, 2013,25(6):755-760. DOI:
10.1016/j.coi.2013.08.002
.
[64]
Choy DF , Hart KM , Borthwick LA ,et al. TH2 and TH17 inflammatory pathways are reciprocally regulated in asthma[J]. Sci Transl Med, 2015,7(301):301ra129. DOI:
10.1126/scitranslmed.aab3142
.
[65]
Pascual-Reguant A , Bayat Sarmadi J , Baumann C ,et al. TH17 cells express ST2 and are controlled by the alarmin IL-33 in the small intestine[J]. Mucosal Immunol, 2017,10(6):1431-1442. DOI:
10.1038/mi.2017.5
.
[66]
Velickovic M , Pejnovic N , Mitrovic S ,et al. ST2 deletion increases inflammatory bone destruction in experimentally induced periapical lesions in mice[J]. J Endod, 2015,41(3):369-375. DOI:
10.1016/j.joen.2014.11.017
.
[67]
Hirose K , Iwata A , Tamachi T ,et al. Allergic airway inflammation: key players beyond the Th2 cell pathway[J]. Immunol Rev, 2017,278(1):145-161. DOI:
10.1111/imr.12540
.
[68]
Chen CC , Kobayashi T , Iijima K ,et al. IL-33 dysregulates regulatory T cells and impairs established immunologic tolerance in the lungs[J]. J Allergy Clin Immunol, 2017,140(5):1351-1363.e7. DOI:
10.1016/j.jaci.2017.01.015
.
[69]
Morita H , Arae K , Unno H ,et al. An Interleukin-33-Mast Cell-Interleukin-2 Axis Suppresses Papain-Induced Allergic Inflammation by Promoting Regulatory T Cell Numbers[J]. Immunity, 2015,43(1):175-186. DOI:
10.1016/j.immuni.2015.06.021
.
[70]
Matta BM , Lott JM , Mathews LR ,et al. IL-33 is an unconventional Alarmin that stimulates IL-2 secretion by dendritic cells to selectively expand IL-33R/ST2+regulatory T cells[J]. J Immunol, 2014,193(8):4010-4020. DOI:
10.4049/jimmunol.1400481
.
[71]
Molofsky AB , Van Gool F , Liang HE ,et al. Interleukin-33 and Interferon-γ Counter-Regulate Group 2 Innate Lymphoid Cell Activation during Immune Perturbation[J]. Immunity, 2015,43(1):161-174. DOI:
10.1016/j.immuni.2015.05.019
.
[72]
Hahn DL . Comment on: International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma[J]. Eur Respir J, 2014,44(1):266. DOI:
10.1183/09031936.00037214
.
[73]
Boulet LP . Airway remodeling in asthma: update on mechanisms and therapeutic approaches[J]. Curr Opin Pulm Med, 2018,24(1):56-62. DOI:
10.1097/MCP.0000000000000441
.
[74]
Liu J , Wang W , Wang L ,et al. IL-33 Initiates Vascular Remodelling in Hypoxic Pulmonary Hypertension by up-Regulating HIF-1α and VEGF Expression in Vascular Endothelial Cells[J]. EBioMedicine, 2018,33:196-210. DOI:
10.1016/j.ebiom.2018.06.003
.
[75]
Theodoropoulou S , Copland DA , Liu J ,et al. Interleukin-33 regulates tissue remodelling and inhibits angiogenesis in the eye[J]. J Pathol, 2017,241(1):45-56. DOI:
10.1002/path.4816
.
[76]
Kaur D , Gomez E , Doe C ,et al. IL-33 drives airway hyper-responsiveness through IL-13-mediated mast cell: airway smooth muscle crosstalk[J]. Allergy, 2015,70(5):556-567. DOI:
10.1111/all.12593
.
[77]
Guo Z , Wu J , Zhao J ,et al. IL-33 promotes airway remodeling and is a marker of asthma disease severity[J]. J Asthma, 2014,51(8):863-869. DOI:
10.3109/02770903.2014.921196
.
[78]
Mizutani N , Nabe T , Yoshino S . Interleukin-33 and alveolar macrophages contribute to the mechanisms underlying the exacerbation of IgE-mediated airway inflammation and remodelling in mice[J]. Immunology, 2013,139(2):205-218. DOI:
10.1111/imm.12071
.
备注信息
评论 (0条)
注册 登录
时间排序
- 时间排序
暂无评论,发表第一条评论抢沙发
最新推荐
更多
ADAM33胞外域脱落在支气管哮喘发病机制中的作用研究进展
覃赞梅 等 国际呼吸杂志 2023,43(12)
吸烟对支气管哮喘气道重塑的影响及作用机制
林慧慧 等 国际呼吸杂志 2023,43(12)
外泌体在支气管哮喘气道重塑中的作用研究进展
林燕美 等 中国医师进修杂志 2023,46(07)
支气管哮喘防治指南(2020年版)
中华医学会呼吸病学分会哮喘学组 中华结核和呼吸杂志 2020,43(12)
分享
详细信息
表
访问与引文
阅读权限
参考文献
访问与引用
访问数据
0
0
全部时间 最近30天 最近6个月 最近12个月
MedAI助手(体验版)
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照
文献快照
N/A
N/A
AI总结中

N/A
N/A
快照内容由人工智能生成,供您参考。

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。
0/50
很抱歉,当前对话已达到其限制。
使用"新建对话"按钮开启更多对话。
停止回答
0/2000
信息反馈
中文(简体)
英文
翻译
机器翻译功能由科大讯飞提供技术支持
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。

你好! 今天我能为您提供什么帮助?
0/30
of
很抱歉,当前对话已达到其限制。
使用"新建对话"按钮开启更多对话。
停止回答
扩写 缩写 改写 翻译
0/2000
信息反馈
历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号
小中大
翻译
润色
扩写
缩写
复制
引用