实验研究
ENGLISH ABSTRACT
1型糖尿病大鼠视网膜基因启动子区域的甲基化水平变化及其意义
李亚红
耿超
刘胜男
王奇
李筱荣
张琰
作者及单位信息
·
DOI: 10.3760/cma.j.cn115985-20190616-00262
Changes in DNA methylation of retinal gene promoter regions and their significance in type 1 diabetic rats
Li Yahong
Geng Chao
Liu Shengnan
Wang Qi
Li Xiaorong
Zhang Yan
Authors Info & Affiliations
Li Yahong
Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
Geng Chao
Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
Liu Shengnan
Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
Wang Qi
Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
Li Xiaorong
Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
Zhang Yan
Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
·
DOI: 10.3760/cma.j.cn115985-20190616-00262
563
113
0
0
0
0
PDF下载
APP内阅读
摘要

目的研究1型糖尿病(T1D)大鼠视网膜基因启动子区域甲基化水平,并探讨其与T1D引起的视网膜损伤之间的关系。

方法采用随机数字表法将20只8~10周龄雄性SD大鼠分为对照组和T1D组,每组10只。T1D组大鼠采用鼠尾静脉注射链脲佐菌素(STZ)法建立大鼠T1D模型,对照组同法注射等容积枸橼酸钠溶液。于注射前和注射后每周监测2个组大鼠体质量,于造模后3 d和5周监测各组大鼠血糖浓度。采用甲基化DNA免疫共沉淀-芯片(MeDIP-chip)技术分析对照组与T1D组大鼠视网膜基因启动子区CpG岛的甲基化状态,并进行基因富集的基因本体(GO)分析和通路分析。

结果与对照组比较,T1D组大鼠出现体质量减轻、多饮、多食、多尿等典型表现。与对照组比较,T1D组大鼠视网膜中共鉴定出1 478个差异性甲基化位点,包括689个高甲基化和789个低甲基化位点,其中768、365和345个差异性甲基化位点分别位于高、中、低CpG岛密度启动子上。GO分析显示,差异性甲基化基因影响了蛋白结合等分子功能。通路分析显示,高甲基化基因与丝裂原活化蛋白激酶(MAPK)和钙信号通路有关,而低甲基化基因与MAPK、Notch及谷氨酸能突触信号通路有关。

结论与对照组大鼠比较,T1D大鼠视网膜中多数基因的甲基化水平发生变化,这些启动子区域的差异性甲基化为糖尿病视网膜病变(DR)分子机制的阐明以及新型治疗靶点的确定提供了依据。

糖尿病,1型;DNA甲基化;甲基化DNA免疫沉淀;CpG岛;糖尿病视网膜病变;表观遗传;动物模型
ABSTRACT

ObjectiveTo study the methylation level of retinal gene promoter region in a rat model of type 1 diabetes (T1D) and investigate the correlation between DNA methylation level and retinal damage caused by T1D.

MethodsTwenty male SD rats aged 8-10 weeks were randomly divided into a control group and a T1D group using a random number table.T1D model was established via a rat tail vein injection of streptozotocin (STZ). The same volume of sodium citrate buffer was injected in the same way in the control group.Body mass of the rats was monitored before and after the injection of STZ.Blood glucose concentration of the rats was detected three days and five weeks following the injection.Methylated DNA immunoprecipitation-chip (MeDIP-chip) technology was employed to analyze the DNA methylation in the CpG islands of retinal gene promoter regions of the rats.Methylation data were compared between the two groups and subjected to Gene Ontology (GO) and pathway enrichment analyses.This study protocol was evaluated and approved by the Institutional Animal Care and Use Committee of Tianjin Medical University, and the use and care of the animals were in accordance with the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health.

ResultsCompared to the normal control group, typical deregulated metabolic syndromes were found in the T1D group.including hyperphagia, polydipsia, polyuria, and loss of body weight.According to the results of MeDIP-chip analysis, 1 478 differentially methylated gene loci were detected in the T1D group compared to the normal control group, of which 689 were hypermethylated and 789 hypomethylated.Of these differentially methylated loci 768, 365 and 345 were located in high, intermediate, and low CpG-density promoters, respectively.GO analysis showed that the differentially methylated genes were involved in some molecular functions such as protein binding.The pathway analysis revealed that the hypermethylated genes in the rats of the T1D group were associated with mitogen-activated protein kinase (MAPK) and calcium signaling pathways; whereas the hypomethylated genes were associated with MAPK, Notch, and glutamatergic synapse signaling pathways.

ConclusionsMethylation level of the majority of genes was altered in T1D rats.A differential methylation in the retinal gene promoter regions provides a preliminary theoretical basis for elucidating the molecular mechanism underpinning diabetic retinopathy and searching for novel therapeutic targets.

Diabetes, type 1;DNA methylation;Methylated DNA immunoprecipitation;CpG island;Diabetic retinopathy;Epigenetics;Disease model, animal
Li Xiaorong, Email: nc.defudabe.umtgnoroaixil
Zhang Yan, Email: nc.defudabe.umt40gnahznay
Training Program for Young and Middle-aged Backbone Talents in Colleges and Universities in Tianjin
引用本文

李亚红,耿超,刘胜男,等. 1型糖尿病大鼠视网膜基因启动子区域的甲基化水平变化及其意义[J]. 中华实验眼科杂志,2020,38(04):291-299.

DOI:10.3760/cma.j.cn115985-20190616-00262

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
糖尿病是以血糖水平异常升高为主要特征的代谢紊乱综合征,已成为21世纪公共卫生面临的重大挑战 [ 1 , 2 ]。截至2017年全球约500万20~99岁年龄段人群死于糖尿病。国际糖尿病联合会预测,到2049年将有6.93亿人罹患糖尿病,比2017年增加2.42亿人 [ 3 ]。此外,2017年全球糖尿病患者医疗费达8 500亿美元 [ 3 ]。1型糖尿病(type 1 diabetes,T1D)是自身免疫性T细胞破坏胰岛β细胞后,胰岛素分泌绝对不足所致 [ 4 ]。糖尿病视网膜病变(diabetic retinopathy,DR)是糖尿病的严重眼部并发症,是工作年龄人群首要的致盲因素 [ 2 , 5 , 6 ]。DNA甲基化是对基因启动子区域的CpG岛进行甲基化修饰,在转录水平调控基因表达的表观遗传学调控方式。研究表明,DNA甲基化是细胞维持生理功能所必需的,与疾病发生和发展密切相关,DNA甲基化异常可导致T1D发病率增加 [ 7 , 8 , 9 , 10 ]。目前,甲基化DNA免疫共沉淀芯片(methylated DNA immunoprecipitation-chip,MeDIP-chip)是分析基因组DNA甲基化准确、可靠的高通量技术手段,可检测全基因组范围内的甲基化位点以及甲基化水平,揭示启动子甲基化对基因表达的调控 [ 11 , 12 ],但糖尿病引起的视网膜损害是否存在基因启动子区域的甲基化水平变化及其涉及的功能通路鲜有研究。本研究中采用MeDIP-chip检测T1D大鼠模型视网膜中基因启动子区域的甲基化状态,探究调控DR发生和发展的表观遗传学机制,为寻找DR新型分子治疗靶点提供思路。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Hu C Jia W Diabetes in China:epidemiology and genetic risk factors and their clinical utility in personalized medication[J]Diabetes 201867(1)∶3-11. DOI: 10.2337/dbi17-0013 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
李筱荣刘巨平重视糖尿病眼部并发症的诊断和治疗[J]中华实验眼科杂志 201735(7)∶577-580. DOI: 10.3760/cma.j.issn.2095-0160.2017.07.001 .
返回引文位置Google Scholar
百度学术
万方数据
Li XR Liu JP . Paying close attention to diagnosis and management of diabetic ocular complications[J]Chin J Exp Ophthamol 201735(7)∶577-580. DOI: 10.3760/cma.j.issn.2095-0160.2017.07.001 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[3]
Cho NH Shaw JE Karuranga S et al. IDF Diabetes Atlas:Global estimates of diabetes prevalence for 2017 and projections for 2045[J]Diabetes Res Clin Pract 2018138271-281. DOI: 10.1016/j.diabres.2018.02.023 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Boitard C Pancreatic islet autoimmunity[J]Presse Med 201241(12p 2)∶636-650. DOI: 10.1016/j.lpm.2012.10.003 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Cai S Yang Q Hou M et al. Alpha-melanocyte-stimulating hormone protects early diabetic retina from blood-retinal barrier breakdown and vascular leakage via MC4R[J]Cell Physiol Biochem 201845(2)∶505-522. DOI: 10.1159/000487029 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Abcouwer SF Gardner TW . Diabetic retinopathy:loss of neuroretinal adaptation to the diabetic metabolic environment[J]Ann N Y Acad Sci 20141311174-190. DOI: 10.1111/nyas.12412 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Suzuki MM Bird A DNA methylation landscapes:provocative insights from epigenomics[J]Nat Rev Genet 20089(6)∶465-476. DOI: 10.1038/nrg2341 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Liu Z Luo W Zhou Y et al. Potential tumor suppressor NESG1 as an unfavorable prognosis factor in nasopharyngeal carcinoma[J/OL]PLoS One 20116(11)∶e27887[2019-02-19]https://doi.org/10.1371/journal.pone.0027887. DOI: 10.1371/journal.pone.0027887 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
王勇管怀进DNA甲基化在晶状体发育及白内障中的研究进展[J]中华实验眼科杂志 201735(8)∶747-751. DOI: 10.3760/cma.j.issn.2095-0160.2017.08.017 .
返回引文位置Google Scholar
百度学术
万方数据
Wang Y Guan HJ . Research progress of DNA methylation in lens development and cataract[J]Chin J Exp Ophthamol 201735(8)∶747-751. DOI: 10.3760/cma.j.issn.2095-0160.2017.08.017 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[10]
Bansal A Pinney SE . DNA methylation and its role in the pathogenesis of diabetes[J]Pediatr Diabetes 201718(3)∶167-177. DOI: 10.1111/pedi.12521 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Cortijo S Wardenaar R Colome-Tatche M et al. Genome-wide analysis of DNA methylation in Arabidopsis using MeDIP-chip[J]Methods Mol Biol 20141112125-149. DOI: 10.1007/978-1-62703-773-0_9 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Weng X Liu F Zhang H et al. Genome-wide DNA methylation profiling in infants born to gestational diabetes mellitus[J]Diabetes Res Clin Pract 201814210-18. DOI: 10.1016/j.diabres.2018.03.016 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Zhang L Dong L Liu X et al. alpha-Melanocyte-stimulating hormone protects retinal vascular endothelial cells from oxidative stress and apoptosis in a rat model of diabetes[J/OL]PLoS One 20149(4)∶e93433[2019-03-21]https://doi.org/10.1371/journal.pone.0093433. DOI: 10.1371/journal.pone.0093433 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
韩倩张琰薄其玉α-黑素细胞刺激素对早期糖尿病大鼠视网膜血管渗漏的保护作用[J]中华实验眼科杂志 201533(4)∶316-322. DOI: 10.3760/cma.j.issn.2095-0160.2015.04.006 .
返回引文位置Google Scholar
百度学术
万方数据
Han Q Zhang Y Bo QY et al. Alleviating effects of α-melanocyte-stimulating hormone on retinal vessel leakage in diabetic rats[J]Chin J Exp Ophthamol 201533(4)∶316-322. DOI: 10.3760/cma.j.issn.2095-0160.2015.04.006 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[15]
Zhang Y Bo Q Wu W et al. alpha-Melanocyte-stimulating hormone prevents glutamate excitotoxicity in developing chicken retina via MC4R-mediated down-regulation of microRNA-194[J/OL]Sci Rep 2015515812[2019-03-04]https://pubmed.ncbi.nlm.nih.gov/26507936/. DOI: 10.1038/srep15812 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
周伟靳春杰孟兆联糖尿病视网膜病变模型鼠品系的选择[J]中华实验眼科杂志 201432(1)∶32-35. DOI: 10.3760/cma.j.issn.2095-0160.2014.01.007 .
返回引文位置Google Scholar
百度学术
万方数据
Zhou W Jin CJ Meng ZL et al. Selection of two types of rat strains for easily diabetic retinopathy[J]Chin J Exp Ophthamol 201432(1)∶32-35. DOI: 10.3760/cma.j.issn.2095-0160.2014.01.007 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[17]
Reik W Dean W Walter J Epigenetic reprogramming in mammalian development[J]Science 2001293(5532)∶1089-1093. DOI: 10.1126/science.1063443 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Weber M Hellmann I Stadler M B et al. Distribution,silencing potential and evolutionary impact of promoter DNA methylation in the human genome[J]Nat Genet 200739(4)∶457-466. DOI: 10.1038/ng1990 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
耿爽陈有信姚翔糖尿病模型大鼠视网膜PGC-1α表达和表观遗传修饰的变化[J]中华实验眼科杂志 201836(6)∶410-416. DOI: 10.3760/cma.j.issn.2095-0160.2018.06.003 .
返回引文位置Google Scholar
百度学术
万方数据
Geng S Chen YX Yao X et al. The alterations of PGC-1α expression and epigenetic modifications in the retina of streptozotocin-induced diabetic rats[J]Chin J Exp Ophthamol 201836(6)∶410-416. DOI: 10.3760/cma.j.issn.2095-0160.2018.06.003 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[20]
杜钰竺向佳卢奕DNA甲基化在常见眼科疾病中的研究进展[J]中国眼耳鼻喉科杂志 201616(1)∶60-64. DOI: 10.14166/j.issn.1671-2420.2016.01.022 .
返回引文位置Google Scholar
百度学术
万方数据
Du Y Zhu XJ Lu Y The research progress of DNA methylation in common ocular diseases[J]Chin J Ophthalmol Otorhinolaryngol 201616(1)∶60-64. DOI: 10.14166/j.issn.1671-2420.2016.01.022 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[21]
Palmke N Santacruz D Walter J Comprehensive analysis of DNA-methylation in mammalian tissues using MeDIP-chip[J]Methods 201153(2)∶175-184. DOI: 10.1016/j.ymeth.2010.07.006 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Guevara MA de Maria N Saez-Laguna E et al. Analysis of DNA cytosine methylation patterns using methylation-sensitive amplification polymorphism (MSAP)[J]Methods Mol Biol 2017145699-112. DOI: 10.1007/978-1-4899-7708-3_9 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
段昕妤肖蘅陈善元DNA甲基化测序技术及其在哺乳动物中的应用研究进展[J]生物学杂志 201835(5)∶79-82,86. DOI: 10.3969/j.issn.2095-1736.2018.05.079 .
返回引文位置Google Scholar
百度学术
万方数据
Duan XY Xiao H Chen SY . Research progress of DNA methylation sequencing technology and application in mammal[J]J Biol 201835(5)∶79-82,86. DOI: 10.3969/j.issn.2095-1736.2018.05.079 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[24]
Deaton AM Webb S Kerr AR et al. Cell type-specific DNA methylation at intragenic CpG islands in the immune system[J]Genome Res 201121(7)∶1074-1086. DOI: 10.1101/gr.118703.110 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Esteller M Cancer epigenomics:DNA methylomes and histone-modification maps[J]Nat Rev Genet 20078(4)∶286-298. DOI: 10.1038/nrg2005 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Stefan M Zhang W Concepcion E et al. DNA methylation profiles in type 1 diabetes twins point to strong epigenetic effects on etiology[J]J Autoimmun 20145033-37. DOI: 10.1016/j.jaut.2013.10.001 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Rui J Deng S Lebastchi J et al. Methylation of insulin DNA in response to proinflammatory cytokines during the progression of autoimmune diabetes in NOD mice[J]Diabetologia 201659(5)∶1021-1029. DOI: 10.1007/s00125-016-3897-4 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Malik S Suchal K Khan SI et al. Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-kappaB-TNF-alpha and TGF-beta1-MAPK-fibronectin pathways[J]Am J Physiol Renal Physiol 2017313(2)∶414-422. DOI: 10.1152/ajprenal.00393.2016 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Sadek KM Lebda MA Nasr SM et al. Spirulina platensis prevents hyperglycemia in rats by modulating gluconeogenesis and apoptosis via modification of oxidative stress and MAPK-pathways[J]Biomed Pharma 2017921085-1094. DOI: 10.1016/j.biopha.2017.06.023 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Kim W Shin YK Kim BJ et al. Notch signaling in pancreatic endocrine cell and diabetes[J]Biochem Biophys Res Commun 2010392(3)∶247-251. DOI: 10.1016/j.bbrc.2009.12.115 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Larsen ZM Angelo AD Cattaneo M et al. Complete mutation scanning of the human SEL 1L gene:a candidate gene for type 1 diabetes[J]Acta Diabetol 200138(4)∶191-192. DOI: 10.1007/s592-001-8078-0 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Osborne NN Casson RJ Wood JP et al. Retinal ischemia:mechanisms of damage and potential therapeutic strategies[J]Prog Retin Eye Res 200423(1)∶91-147. DOI: 10.1016/j.preteyeres.2003.12.001 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Lieth E Barber AJ Xu B et alPenn State Retina Research Group. Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy[J]Diabetes 199847(5)∶815-820. DOI: 10.2337/diabetes.47.5.815 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Jaffrey SR Snowman AM Eliasson MJ et al. CAPON:a protein associated with neuronal nitric oxide synthase that regulates its interactions with PSD95[J]Neuron 199820(1)∶115-124. DOI: 10.1016/s0896-6273(00)80439-0 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
李筱荣,Email: nc.defudabe.umtgnoroaixil
B
张琰,Email: nc.defudabe.umt40gnahznay
C
所有作者均声明不存在任何利益冲突
D
国家自然科学基金项目 (81970827)
天津市自然科学基金重点项目 (17JCZDJC35600)
高水平创新型人才计划—杰出学者/中年领军人才项目 (YDYYRCXM-B2018-02)
校级大学生创新创业项目训练项目 (201910062073)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号