综述
ENGLISH ABSTRACT
肿瘤坏死因子调控下MeCP2与增生性玻璃体视网膜病变发病的关联
徐月娟
李晓华 [综述]
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20191111-00491
Association between MeCP2 and proliferative vitreoretinopathy under the regulation of tumor necrosis factor
Xu Yuejuan
Li Xiaohua
Authors Info & Affiliations
Xu Yuejuan
Department of Ophthalmology, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Henan University People's Hospital, Zhengzhou University People's Hospital, Zhengzhou 450003, China
Li Xiaohua
Department of Ophthalmology, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Henan University People's Hospital, Zhengzhou University People's Hospital, Zhengzhou 450003, China
·
DOI: 10.3760/cma.j.cn115989-20191111-00491
0
0
0
0
0
0
PDF下载
APP内阅读
摘要

增生性玻璃体视网膜病变(PVR)是由多种细胞因子参与的眼底疾病,其重要的病理过程是视网膜色素上皮(RPE)细胞的上皮-间充质转化(EMT)。肿瘤坏死因子(TNF)是一种重要的炎性反应诱导因子,可由活化的RPE细胞、小胶质细胞、单核细胞和巨噬细胞产生,进而参与PVR发生和发展过程。除了细胞因子之外,表观遗传学因素如DNA甲基化也在PVR的发生中起了重要作用,其中甲基CpG结合蛋白(MeCP2)参与EMT及纤维化,且在PVR膜中有较高的表达,转化的RPE细胞和小胶质细胞也存在MeCP2的阳性表达,推测MeCP2在PVR发生和发展过程中具有重要作用。TNF也可刺激MeCP2的表达。因此,本文就MeCP2在PVR形成中的作用以及TNF与MeCP2之间的交互反应在PVR形成中的作用进行综述。

肿瘤坏死因子;MeCP2;DNA甲基化;增生性玻璃体视网膜病变;表观遗传学
ABSTRACT

Proliferative vitreoretinopathy (PVR) is an ocular fundus disease involving multiple cytokines.Its important pathological process is epithelial-mesenchymal transition (EMT) of retinal pigment epithelium (RPE) cells.Tumor necrosis factor (TNF) is an important inflammatory response inducing factor, which can be produced by activated RPE cells, microglia, monocytes and macrophages, and then participate in the occurrence and development of PVR.In addition to cytokines, epigenetic factors such as DNA methylation also play an important role in the development of PVR, in which methyl-CpG binding protein 2(MeCP2) is involved in EMT and fibrosis, and is highly expressed in PVR membrane.The positive expression of MeCP2 is also found in transformed RPE cells and microglia.It is speculated that MeCP2 plays an important role in the occurrence and development of PVR.TNF can also stimulate the expression of MeCP2.This article reviews the role of MeCP2 and the interaction between TNF and MeCP2 in the formation of PVR.

Tumor necrosis factor;MeCP2;DNA methylation;Proliferative vitreoretinopathy;Epigenetics
Li Xiaohua, Email: mocdef.3ab616116_lhx
引用本文

徐月娟,李晓华. 肿瘤坏死因子调控下MeCP2与增生性玻璃体视网膜病变发病的关联[J]. 中华实验眼科杂志,2020,38(06):548-552.

DOI:10.3760/cma.j.cn115989-20191111-00491

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
增生性玻璃体视网膜病变(proliferative vitreoretinopathy,PVR)是视网膜脱离及修复术后的严重并发症,也是孔源性视网膜脱离手术失败常见的原因。患者表现为视力下降甚至失明,严重影响患者的生活质量。PVR的特点是视网膜表面和玻璃体腔广泛增生膜的形成 [ 1 , 2 ]。目前,PVR的主要治疗方式是手术治疗,但其成功率仅为60%~75% [ 3 ]。寻找更加安全有效的PVR治疗方法是目前亟待解决的问题。本文将着重讨论肿瘤坏死因子(tumor necrosis factor,TNF)、甲基CpG结合蛋白2(methyl-CpG binding protein 2,MeCP2)及其与PVR发展之间的关联,展望新的治疗靶点在PVR临床诊治中的应用。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
He S , Barron E , Ishikawa K et al. Inhibition of DNA methylation and Methyl-CpG-Binding protein 2 Suppresses RPE transdifferentiation:relevance to proliferative vitreoretinopathy[J]Invest Ophthalmol Vis Sci 201556(9)∶5579-5589. DOI: 10.1167/iovs.14-16258 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Yoo K , Son BK , Kim S et al. Substance P prevents development of proliferative vitreoretinopathy in mice by modulating TNF-α[J]Mol Vis 201723933-943.
返回引文位置Google Scholar
百度学术
万方数据
[3]
Wong CW , Wong WL , Yeo IY et al. Trends and factors related to outcomes for primary rhegmatogenous retinal detachment surgery in a large asian tertiary eye center[J]Retina 201434(4)∶684-692. DOI: 10.1097/IAE.0b013e3182a48900 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Wong CW , Cheung N , Ho C et al. Characterisation of the inflammatory cytokine and growth factor profile in a rabbit model of proliferative vitreoretinopathy[J]Sci Rep 20199(1)∶15419. DOI: 10.1038/s41598-019-51633-8 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Feist RM Jr, King JL , Morris R et al. Myofibroblast and extracellular matrix origins in proliferative vitreoretinopathy[J]Graefe's Arch Clin Exp Ophthalmol 2014252(2)∶347-357. DOI: 10.1007/s00417-013-2531-0 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Cui JZ , Chiu A , Maberley D et al. Stage specificity of novel growth factor expression during development of proliferative vitreoretinopathy[J]Eye (Lond) 200721(2)∶200-208. DOI: 10.1038/sj.eye.6702169 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Dieudonné SC , La Heij EC , Diederen RM et al. Balance of vascular endothelial growth factor and pigment epithelial growth factor prior to development of proliferative vitreoretinopathy[J]Ophthalmic Res 200739(3)∶148-154. DOI: 10.1159/000103234 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Jing R , Qi T , Wen C et al. Interleukin-2 induces extracellular matrix synthesis and TGF-β2 expression in retinal pigment epithelial cells[J]Dev Growth Differ 201961(7-8)∶410-418. DOI: 10.1111/dgd.12630 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Lawrence M , Daujat S , Schneider R Lateral thinking:how histone modifications regulate gene expression[J]Trends Genet 201632(1)∶42-56. DOI: 10.1016/j.tig.2015.10.007 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
V Subramaniam A , Yehya A , Cheng WK et al. Epigenetics:The master control of endothelial cell fate in cancer[J/OL]Life Sci 2019232116652[2019-11-11]http://www.ncbi.nlm.nih.gov/pubmed/31302197. DOI: 10.1016/j.lfs.2019.116652 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Ulukan B , Sila Ozkaya Y , Zeybel M Advances in the epigenetics of fibroblast biology and fibrotic diseases[J]Curr Opin Pharmacol 201949102-109. DOI: 10.1016/j.coph.2019.10.001 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Kinde B , Wu DY , Greenberg ME et al. DNA methylation in the gene body influences MeCP2-mediated gene repression[J]Proc Natl Acad Sci U S A 2016113(52)∶15114-15119. DOI: 10.1073/pnas.1618737114 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Du Q , Luu PL , Stirzaker C et al. Methyl-CpG-binding domain proteins:readers of the epigenome[J]Epigenomics 20157(6)∶1051-1073. DOI: 10.2217/epi.15.39 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Ehrhart F , Coort SL , Cirillo E et al. Rett syndrome-biological pathways leading from MECP2 to disorder phenotypes[J]Orphanet J Rare Dis 201611(1)∶158. DOI: 10.1186/s13023-016-0545-5 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Fan G , Hutnick L Methyl-CpG binding proteins in the nervous system[J]Cell Res 200515(4)∶255-261. DOI: 10.1038/sj.cr.7290294 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Qadir MI , Anwer F Epigenetic modification related to acetylation of histone and methylation of DNA as a key player in immunological disorders[J]Crit Rev Eukaryot Gene Expr 201929(1)∶1-15. DOI: 10.1615/CritRevEukaryotGeneExpr.2018024760 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Hu B , Gharaee-Kermani M , Wu Z et al. Essential role of MeCP2 in the regulation of myofibroblast differentiation during pulmonary fibrosis[J]Am J Pathol 2011178(4)∶1500-1508. DOI: 10.1016/j.ajpath.2011.01.002 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Hashimoto H , Vertino PM , Cheng X Molecular coupling of DNA methylation and histone methylation[J]Epigenomics 20102(5)∶657-669. DOI: 10.2217/epi.10.44 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Skene PJ , Illingworth RS , Webb S et al. Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state[J]Mol Cell 201037(4)∶457-468. DOI: 10.1016/j.molcel.2010.01.030 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Bagga JS , D'Antonio LA . Role of conserved cis-regulatory elements in the post-transcriptional regulation of the human MECP2 gene involved in autism[J]Hum Genomics 2013719. DOI: 10.1186/1479-7364-7-19 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Newnham CM , Hall-Pogar T , Liang S et al. Alternative polyadenylation of MeCP2:Influence of cis-acting elements and trans-acting factors[J]RNA Biol 20107(3)∶361-372. DOI: 10.4161/rna.7.3.11564 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Bijkerk R , Trimpert C , van Solingen C et al. MicroRNA-132 controls water homeostasis through regulating MECP2-mediated vasopressin synthesis[J]Am J Physiol Renal Physiol 2018315(4)∶F1129-1129F1138. DOI: 10.1152/ajprenal.00087.2018 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Shukla GC , Singh J , Barik S MicroRNAs:processing,maturation,target recognition and regulatory functions[J]Mol Cell Pharmacol 20113(3)∶83-92.
返回引文位置Google Scholar
百度学术
万方数据
[24]
Kaneko H , Terasaki H Biological involvement of microRNAs in proliferative vitreoretinopathy[J]Transl Vis Sci Technol 20176(4)∶5. DOI: 10.1167/tvst.6.4.5 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Zhang R , Su B Small but influential:the role of microRNAs on gene regulatory network and 3'UTR evolution[J]J Genet Genomics 200936(1)∶1-6. DOI: 10.1016/S1673-8527(09)60001-1 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Ye EA , Steinle JJ . miR-15b/16 protects primary human retinal microvascular endothelial cells against hyperglycemia-induced increases in tumor necrosis factor alpha and suppressor of cytokine signaling 3[J]J Neuroinflammation 20151244. DOI: 10.1186/s12974-015-0265-0 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Yoon C , Kim D , Kim S et al. MiR-9 regulates the post-transcriptional level of VEGF165a by targeting SRPK-1 in ARPE-19 cells[J]Graefe's Arch Clin Exp Ophthalmol 2014252(9)∶1369-1376. DOI: 10.1007/s00417-014-2698-z .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Gao X , Xu H , Xu D et al. MiR-411-3p alleviates Silica-induced pulmonary fibrosis by regulating Smurf2/TGF-β signaling[J/OL]Exp Cell Res 2020388(2)∶111878[2019-11-11]http://www.ncbi.nlm.nih.gov/pubmed/32004504. DOI: 10.1016/j.yexcr.2020.111878 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Kim JY , Kim KM , Yang JH et al. Induction of E6AP by microRNA-302c dysregulation inhibits TGF-β-dependent fibrogenesis in hepatic stellate cells[J]Sci Rep 202010(1)∶444. DOI: 10.1038/s41598-019-57322-w .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Wang L , Liu J , Xie W et al. miR-425 reduction causes aberrant proliferation and collagen synthesis through modulating TGF-β/Smad signaling in acute respiratory distress syndrome[J]Int J Clin Exp Pathol 201912(7)∶2604-2612.
返回引文位置Google Scholar
百度学术
万方数据
[31]
Kozlova A , Pachera E , Maurer B et al. Regulation of fibroblast apoptosis and proliferation by microRNA-125b in systemic sclerosis[J]Arthritis Rheumatol 201971(12)∶2068-2080. DOI: 10.1002/art.41041 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Wang Y , Chen C , Deng Z et al. Repression of TSC1/TSC2 mediated by MeCP2 regulates human embryo lung fibroblast cell differentiation and proliferation[J]Int J Biol Macromol 201796578-588. DOI: 10.1016/j.ijbiomac.2016.12.062 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Zhang N , Liu K , Wang K et al. Dust induces lung fibrosis through dysregulated DNA methylation[J]Environ Toxicol 201934(6)∶728-741. DOI: 10.1002/tox.22739 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Tao H , Yang JJ , Shi KH et al. Epigenetic factors MeCP2 and HDAC6 control α-tubulin acetylation in cardiac fibroblast proliferation and fibrosis[J]Inflamm Res 201665(5)∶415-426. DOI: 10.1007/s00011-016-0925-2 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Cheng F , Lienlaf M , Perez-Villarroel P et al. Divergent roles of histone deacetylase 6 (HDAC6) and histone deacetylase 11 (HDAC11) on the transcriptional regulation of IL10 in antigen presenting cells[J]Mol Immunol 201460(1)∶44-53. DOI: 10.1016/j.molimm.2014.02.019 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Tao H , Yang JJ , Hu W et al. MeCP2 regulation of cardiac fibroblast proliferation and fibrosis by down-regulation of DUSP5[J]Int J Biol Macromol 20168268-75. DOI: 10.1016/j.ijbiomac.2015.10.076 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Tao H , Tao JY , Song ZY et al. MeCP2 triggers diabetic cardiomyopathy and cardiac fibroblast proliferation by inhibiting RASSF1A[J]Cell Signal 201963109387. DOI: 10.1016/j.cellsig.2019.109387 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Page A , Paoli P , Moran Salvador E et al. Hepatic stellate cell transdifferentiation involves genome-wide remodeling of the DNA methylation landscape[J]J Hepatol 201664(3)∶661-673. DOI: 10.1016/j.jhep.2015.11.024 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
Moran-Salvador E , Garcia-Macia M , Sivaharan A et al. Fibrogenic activity of MECP2 is regulated by phosphorylation in hepatic stellate cells[J]Gastroenterology 2019157(5)∶1398-1412.e9. DOI: 10.1053/j.gastro.2019.07.029 .
返回引文位置Google Scholar
百度学术
万方数据
[40]
Tao H , Huang C , Yang JJ et al. MeCP2 controls the expression of RASAL1 in the hepatic fibrosis in rats[J]Toxicology 2011290(2-3)∶327-333. DOI: 10.1016/j.tox.2011.10.011 .
返回引文位置Google Scholar
百度学术
万方数据
[41]
Takata A , Otsuka M , Kishikawa T et al. RASAL1 is a potent regulator of hepatic stellate cell activity and liver fibrosis[J]Oncotarget 20178(39)∶64840-64852. DOI: 10.18632/oncotarget.17609 .
返回引文位置Google Scholar
百度学术
万方数据
[42]
Xu X , Tan X , Hulshoff MS et al. Hypoxia-induced endothelial-mesenchymal transition is associated with RASAL1 promoter hypermethylation in human coronary endothelial cells[J]FEBS Lett 2016590(8)∶1222-1233. DOI: 10.1002/1873-3468.12158 .
返回引文位置Google Scholar
百度学术
万方数据
[43]
Tan X , Xu X , Zeisberg EM et al. High inorganic phosphate causes DNMT1 phosphorylation and subsequent fibrotic fibroblast activation[J]Biochem Biophys Res Commun 2016472(3)∶459-464. DOI: 10.1016/j.bbrc.2016.01.077 .
返回引文位置Google Scholar
百度学术
万方数据
[44]
Bechtel W , McGoohan S , Zeisberg EM et al. Methylation determines fibroblast activation and fibrogenesis in the kidney[J]Nat Med 201016(5)∶544-550. DOI: 10.1038/nm.2135 .
返回引文位置Google Scholar
百度学术
万方数据
[45]
Yasui DH , Xu H , Dunaway KW et al. MeCP2 modulates gene expression pathways in astrocytes[J]Mol Autism 20134(1)∶3. DOI: 10.1186/2040-2392-4-3 .
返回引文位置Google Scholar
百度学术
万方数据
[46]
Brenner D , Blaser H , Mak TW . Regulation of tumour necrosis factor signalling:live or let die[J]Nat Rev Immunol 201515(6)∶362-374. DOI: 10.1038/nri3834 .
返回引文位置Google Scholar
百度学术
万方数据
[47]
Ting AT , Bertrand M More to life than NF-κB in TNFR1 signaling[J]Trends Immunol 201637(8)∶535-545. DOI: 10.1016/j.it.2016.06.002 .
返回引文位置Google Scholar
百度学术
万方数据
[48]
Kalliolias GD , Ivashkiv LB . TNF biology,pathogenic mechanisms and emerging therapeutic strategies[J]Nat Rev Rheumatol 201612(1)∶49-62. DOI: 10.1038/nrrheum.2015.169 .
返回引文位置Google Scholar
百度学术
万方数据
[49]
Kebede AF , Schneider R , Daujat S Novel types and sites of histone modifications emerge as players in the transcriptional regulation contest[J]FEBS J 2015282(9)∶1658-1674. DOI: 10.1111/febs.13047 .
返回引文位置Google Scholar
百度学术
万方数据
[50]
de Ruijter AJ , van Gennip AH , Caron HN et al. Histone deacetylases (HDACs)∶characterization of the classical HDAC family[J]Biochem J 2003370(Pt 3)∶737-749. DOI: 10.1042/BJ20021321 .
返回引文位置Google Scholar
百度学术
万方数据
[51]
Kim YS , Cha H , Kim HJ et al. The anti-fibrotic effects of CG-745,an HDAC inhibitor,in bleomycin and PHMG-induced mouse models[J/OL]Molecules 201924(15)pii∶E2792[2019-11-11]http://www.ncbi.nlm.nih.gov/pubmed/31370295. DOI: 10.3390/molecules24152792 .
返回引文位置Google Scholar
百度学术
万方数据
[52]
Lyu X , Hu M , Peng J et al. HDAC inhibitors as antifibrotic drugs in cardiac and pulmonary fibrosis[J/OL]Ther Adv Chronic Dis 201910 10.1177/2040622319862697 [2019-11-11]http://www.ncbi.nlm.nih.gov/pubmed/31367296. DOI:.
返回引文位置Google Scholar
百度学术
万方数据
[53]
Wohlfahrt T , Rauber S , Uebe S et al. PU.1 controls fibroblast polarization and tissue fibrosis[J]Nature 2019566(7744)∶344-349. DOI: 10.1038/s41586-019-0896-x .
返回引文位置Google Scholar
百度学术
万方数据
[54]
Tan J , Liu Y , Li W et al. Ocular pathogenesis and immune reaction after intravitreal dispase injection in mice[J]Mol Vis 201218887-900.
返回引文位置Google Scholar
百度学术
万方数据
[55]
Idrees S , Sridhar J , Kuriyan AE . Proliferative vitreoretinopathy:a review[J]Int Ophthalmol Clin 201959(1)∶221-240. DOI: 10.1097/IIO.0000000000000258 .
返回引文位置Google Scholar
百度学术
万方数据
[56]
Takahashi E , Nagano O , Ishimoto T et al. Tumor necrosis factor-alpha regulates transforming growth factor-beta-dependent epithelial-mesenchymal transition by promoting hyaluronan-CD44-moesin interaction[J]J Biol Chem 2010285(6)∶4060-4073. DOI: 10.1074/jbc.M109.056523 .
返回引文位置Google Scholar
百度学术
万方数据
[57]
Schiff L , Boles NC , Fernandes M et al. P38 inhibition reverses TGFβ1 and TNFα-induced contraction in a model of proliferative vitreoretinopathy[J]Commun Biol 20192162. DOI: 10.1038/s42003-019-0406-6 .
返回引文位置Google Scholar
百度学术
万方数据
[58]
Mudersbach T , Siuda D , Kohlstedt K et al. Epigenetic control of the angiotensin-converting enzyme in endothelial cells during inflammation[J/OL]PLoS One 201914(5)∶e0216218[2019-11-11]http://www.ncbi.nlm.nih.gov/pubmed/31042763. DOI: 10.1371/journal.pone.0216218 .
返回引文位置Google Scholar
百度学术
万方数据
[59]
O'Driscoll C , Kaufmann WE , Bressler J Relationship between Mecp2 and NFκb signaling during neural differentiation of P19 cells[J]Brain Res 2013149035-42. DOI: 10.1016/j.brainres.2012.10.041 .
返回引文位置Google Scholar
百度学术
万方数据
[60]
Aten S , Hansen KF , Snider K et al. miR-132 couples the circadian clock to daily rhythms of neuronal plasticity and cognition[J]Learn Mem 201825(5)∶214-229. DOI: 10.1101/lm.047191.117 .
返回引文位置Google Scholar
百度学术
万方数据
[61]
Li M , Shao H , Zhang X et al. Hesperidin alleviates lipopolysaccharide-induced neuroinflammation in mice by promoting the miRNA-132 pathway[J]Inflammation 201639(5)∶1681-1689. DOI: 10.1007/s10753-016-0402-7 .
返回引文位置Google Scholar
百度学术
万方数据
[62]
Liu F , Li Y , Jiang R et al. miR-132 inhibits lipopolysaccharide-induced inflammation in alveolar macrophages by the cholinergic anti-inflammatory pathway[J]Exp Lung Res 201541(5)∶261-269. DOI: 10.3109/01902148.2015.1004206 .
返回引文位置Google Scholar
百度学术
万方数据
[63]
Cho SH , Kim HS , Lee W et al. Eckol from Ecklonia cava ameliorates TNF-α/IFN-γ-induced inflammatory responses via regulating MAPKs and NF-κB signaling pathway in HaCaT cells[J/OL]Int Immunopharmacol 202082106146[2019-11-11]http://www.ncbi.nlm.nih.gov/pubmed/32088638. DOI: 10.1016/j.intimp.2019.106146 .
返回引文位置Google Scholar
百度学术
万方数据
[64]
Cronk JC , Derecki NC , Ji E et al. Methyl-CpG binding protein 2 regulates microglia and macrophage gene expression in response to inflammatory stimuli[J]Immunity 201542(4)∶679-691. DOI: 10.1016/j.immuni.2015.03.013 .
返回引文位置Google Scholar
百度学术
万方数据
[65]
O'Driscoll CM , Lima MP , Kaufmann WE et al. Methyl CpG binding protein 2 deficiency enhances expression of inflammatory cytokines by sustaining NF-κB signaling in myeloid derived cells[J]J Neuroimmunol 201528323-29. DOI: 10.1016/j.jneuroim.2015.04.005 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
李晓华,Email: mocdef.3ab616116_lhx
B
所有作者均声明不存在利益冲突
C
国家自然科学基金面上项目 (81770952)
河南省自然科学基金面上项目 (162300410296)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号