实验研究
ENGLISH ABSTRACT
治疗性650 nm低功率半导体激光照射鸡视网膜的安全剂量研究
王一鹏
陈松
杨文超
孔佳慧
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20200519-00359
Safe dose of 650 nm low-power semiconductor laser irradiation in chicken retina
Wang Yipeng
Chen Song
Yang Wenchao
Kong Jiahui
Authors Info & Affiliations
Wang Yipeng
Anyang Eye Hospital, Anyang Key Laboratory of Ophthalmology, Anyang 455000, China
Chen Song
Clinical College of Ophthalmology, Tianjin Medical University, Tianjin Eye Hospital, Tianjin 300020, China
Yang Wenchao
Anyang Eye Hospital, Anyang Key Laboratory of Ophthalmology, Anyang 455000, China
Kong Jiahui
Anyang Eye Hospital, Anyang Key Laboratory of Ophthalmology, Anyang 455000, China
·
DOI: 10.3760/cma.j.cn115989-20200519-00359
1458
92
0
0
3
4
PDF下载
APP内阅读
摘要

目的观察650 nm半导体激光(功率2 mW)照射以视锥细胞为主的鸡视网膜后是否存在慢性光损伤,探讨该波段激光对视网膜的安全性。

方法采用随机数字表法将60只自然光线下饲养1个月的小鸡分为正常对照组、照射3-min组、照射6-min组和照射30-min组,每组15只。采用650 nm激光并按照分组不同各组小鸡双眼每日接受不同时间的激光照射。分别于激光照射后1个月(2月龄鸡)、3个月(4月龄鸡)和6个月(7月龄鸡)各组任选5只进行活体光相干断层扫描(OCT)检查,测定鸡的相对视网膜面积;采用过量麻醉法处死并制备视网膜切片,行苏木精-伊红染色和TUNEL染色,分别观察各组鸡视网膜面积变化和视细胞凋亡情况;实验眼制备视网膜匀浆,分别采用TBA法和NBT法检测鸡视网膜中丙二醛质量摩尔浓度和超氧化物歧化酶(SOD)比活性;采用Western blot法检测鸡视网膜中L/M视蛋白和视紫红质蛋白的表达。

结果2月龄时鸡照射30-min组视网膜中丙二醛质量摩尔浓度高于正常对照组,差异有统计学意义( P<0.05),4月龄时激光照射6-min组和照射30-min组丙二醛质量摩尔浓度均高于正常对照组,差异均有统计学意义( P=0.026、0.003),7月龄时所有激光照射组鸡视网膜中丙二醛质量摩尔浓度均高于正常对照组,差异均有统计学意义( P=0.038、0.032、<0.01)。7月龄时激光照射30-min组鸡视网膜中SOD比活性和视紫红质蛋白相对表达量均低于正常对照组[SOD:(140.20±5.99)(nmol/s·mg)与(160.57±3.13)(nmol/s·mg);视紫红质蛋白:0.392±0.065与0.566±0.072],差异均有统计学意义(均 P<0.05)。OCT检查显示,照射3-min组、照射6-min组和照射30-min组6个月内鸡视网膜相对面积及形态与正常对照组相比无明显差别;组织病理学检查显示各照射组鸡视网膜厚度均接近正常对照组,TUNEL染色显示各组鸡视网膜细胞排列整齐,未发现TUNEL阳性染色细胞。

结论实验鸡眼接受650 nm半导体激光照射时,用2 mW的功率每日照射6 min持续6个月不引起明显光损伤;每日照射30 min持续6个月引起视网膜中自由基含量增高和视紫红质减少,提示存在光损伤。

光/不良作用;视网膜;激光/治疗用途;红光;氧化应激;凋亡;
ABSTRACT

ObjectiveTo observe whether there was a chronic light damage after the irradiation of 650 nm semiconductor laser (power 2 mW) in chicken cone-rich-retina and discuss the safety of this laser for retina.

MethodsSixty 1-month-old chicken reared under natural light were divided into a normal control group, an irradiation 3-min group, an irradiation 6-min group and an irradiation 30-min group by using a random number table and 15 for each group.The chicken eyes were irradiated with 650 nm laser for different duration according to a grouping.Relative retina area was measured with optical coherence tomography (OCT) at 1 month (2-month-old chicken), 3 months (4-month-old chicken) and 6 months (7-month-old chicken) after laser irradiation.Chickens were sacrificed by overdose anesthesia and the histopathology of chiken retina was examined by hematoxylin-eosin staining.The apoptosis of the retinal cells was evaluated by TUNEL staining.Chicken retinal homogenate was prepared, and the content of malondialdehyde and activity of superoxide dismutase (SOD) in the retina were detected by TBA method and NBT method, respectively.Western blot was employed to detect the expression of L/M opsin and rhodopsin in the retina.The use and care of the animals complied with Regulations for the Administration of Affair Concerning Experimental Animals by State Science and Technology Commission.

ResultsIn 2-month-old chicken, the molar concentration of malondialdehyde in retina was significantly higher in the irradiation 30-min group compared with the normal control group ( P<0.05). In 4-month-old chicken, the molar concentration of malondialdehyde was statistically higher in the irradiation 6-min group and the irradiation 30-min group in comparison with the normal control group ( P=0.026, 0.003). In 7-month-old chicken, the concentrations of retinal malondialdehyde in the irradiation 3-min group, irradiation 6-min group and irradiation 30-min group were statistically higher than those of the normal control group( P=0.038, 0.032, <0.01). In 7-month-old chicken, the SOD activity and the relative expression of rhodopsin in the retina of the irradiation 30-min group were statistically reduced incomparison with the normal control group (SOD: [140.20±5.99][nmol/s·mg] vs.[160.57±3.13][nmol/s·mg]); Rhodopsin: 0.392±0.065 vs.0.566±0.072) (both at P<0.05). OCT showed that there was no significant difference in relative retinal area within 6 months among the four groups.Histopathological examination showed that the thickness of the retina in each irradiation group was close to the normal control group.TUNEL staining showed that the retinal cells were regularly arranged, and no TUNEL positive staining cells were found in all of the groups.

ConclusionsIrradiation of a 650 nm semiconductor laser (2 mW) in chicken's eyes for 6 minutes is safe for retina within 6 months.The lasser irradiation 30 minutes for 6 months results in an increase of free radical content in the retina and a decrease in rhodopsin, suggesting the presence of photo damage.

Light/adverse effects;Retina;Laser/therapeutic use;Red light;Oxidative stress;Apotosis;Chicken
Chen Song, Email: mocdef.6ab219999gnosnehc
引用本文

王一鹏,陈松,杨文超,等. 治疗性650 nm低功率半导体激光照射鸡视网膜的安全剂量研究[J]. 中华实验眼科杂志,2020,38(07):573-580.

DOI:10.3760/cma.j.cn115989-20200519-00359

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
红光对生物组织具有抗炎、增加线粒体电子链传递等生物调节作用,在促进伤口修复、组织细胞再生、改善血液循环方面具有良好作用,近年来主要用于治疗周围神经损伤、慢性疼痛和减轻视网膜、视神经损伤等 [ 1 , 2 , 3 ]。临床上采用的红光治疗波段多为630~700 nm,发光二极管或激光均有相似的治疗作用 [ 4 , 5 ]。激光作为一种特殊光线具有亮度高、单色性、方向性好的特点,对一些局部病灶,如黄斑区病变可发挥精确治疗作用,但目前关于低功率激光治疗时对视网膜光照的安全性尚未完全明确。低功率激光光照短期内人眼无明显光损伤表现,但长期光照的安全性研究仍缺乏。视网膜光损伤主要表现为光化学损伤、机械损伤和光热损伤 [ 6 ]。光化学损伤早期主要表现在视网膜光感受器外节和视网膜色素上皮(retinal pigment epithelium,RPE)细胞,其发生与自由基氧化损伤有密切关系。正常情况下,感光细胞外节盘膜中含有高水平的长链不饱和脂肪酸,对氧化反应很敏感,外界持续光照会增加感光细胞中自由基含量,这些自由基会与盘膜、线粒体和内质网中的多价不饱和脂肪酸结合使其发生过氧化反应,导致生物功能异常。脂质过氧化物中的醛类化合物,如丙二醛,也具有细胞毒性,可与细胞内蛋白、核酸等含氮化合物发生交联使其丧失功能,长期自由基氧化损伤最终导致细胞功能异常,引起细胞凋亡 [ 7 , 8 ]。采用3 mW的650 nm半导体激光对豚鼠视网膜连续照射1个月可引起轻度光损伤,其主要机制为Fas蛋白表达轻度增加、线粒体功能异常和外层视网膜感光细胞凋亡 [ 9 ]。本研究观察长期低功率激光照射后鸡视网膜是否产生光化学损伤,评估该波段激光用于视网膜黄斑区病变治疗的安全性。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Beirne K , Rozanowska M , Votruba M Photostimulation of mitochondria as a treatment for retinal neurodegeneration[J]Mitochondrion 201736:85-95. DOI: 10.1016/j.mito.2017.05.002 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Eells J T , Gopalakrishnan S , Valter K Near-infrared photobiomodulation in retinal injury and disease[J]Adv Exp Med & Bio 2016854:437-441. DOI: 10.1007/978-3-319-17121-0_58 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Merry GF , Munk MR , Dotson RS et al. Photobiomodulation reduces drusen volume and improves visual acuity and contrast sensitivity in dry age-related macular degeneration[J]Acta Ophthalmol 201795(4):270-277. DOI: 10.1111/aos.13354 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Geneva Ⅱ . Photobiomodulation for the treatment of retinal diseases:a review[J]Int J Ophthalmol 20169(1):145-152. DOI: 10.18240/ijo.2016.01.24 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Rojas JC , Gonzalez-Lima F Low-level light therapy of the eye and brain[J]Eye Brain 20113:49-67. DOI: 10.2147/EB.S21391 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
王淑荣吴煜波何宇茜视网膜光损伤的研究进展[J]中华眼视光学与视觉科学杂志 201517(10):633-636. DOI: 10.3760/cma.j.issn.1674-845X.2015.10.015 .
返回引文位置Google Scholar
百度学术
万方数据
Wang SR , Wu YB , He YX et al. Progress in research on retinal light damage[J]Chin J Optom Ophthalmol Vis Sci 201517(10):633-636. DOI: 10.3760/cma.j.issn.1674-845X.2015.10.015 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[7]
姜文静张丽娜于晓内质网应激对光照诱导的人视网膜色素上皮细胞损伤的促进作用[J]中华实验眼科杂志 201735(9):816-823. DOI: 10.3760/cma.j.issn.2095-0160.2017.09.010 .
返回引文位置Google Scholar
百度学术
万方数据
Jiang WJ , Zhang LN , Yu X et al. Mediated effects of endoplasmic reticulum stress on light-induced apoptosis and inflammation of human retinal pigment epithelial cell[J]Chin J Exp Ophthalmol 201735(9):816-823. DOI: 10.3760/cma.j.issn.2095-0160.2017.09.010 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[8]
Organisciak DT , Vaughan DK . Retinal light damage:mechanisms and protection[J]Prog Retin Eye Res 201029(2):113-134. DOI: 10.1016/j.preteyeres.2009.11.004 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
吴小兰邱良秀王双勇. 650 nm半导体激光照射豚鼠视网膜诱导细胞凋亡及Fas蛋白的表达[J]第三军医大学学报 201032(14):1563-1565.
返回引文位置Google Scholar
百度学术
万方数据
[10]
Jha KA , Nag TC , Wadhwa S et al. Expressions of visual pigments and synaptic proteins in neonatal chick retina exposed to light of variable photoperiods[J]J Biosci 201641(4):667-676. DOI: 10.1007/s12038-016-9637-6 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Kostic C , Arsenijevic Y Animal modelling for inherited central vision loss[J]J Pathol 2016238(2):300-310. DOI: 10.1002/path.4641 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Díaz NM , Morera LP , Tempesti T et al. The visual cycle in the inner retina of chicken and the involvement of retinal G-protein-coupled receptor (RGR)[J]Mol Neurobiol 201754(4):2507-2517. DOI: 10.1007/s12035-016-9830-5 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Saliba A , Du Y , Liu H et al. Photobiomodulation mitigates diabetes-induced retinopathy by direct and indirect mechanisms:evidence from intervention studies in pigmented mice[J/OL]PLoS One 201510(10):e0139003[2020-01-06]https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0139003. DOI: 10.1371/journal.pone.0139003 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Natoli R , Valter K , Barbosa M et al. 670 nm photobiomodulation as a novel protection against retinopathy of prematurity:evidence from oxygen induced retinopathy models[J/OL]PLoS One 20138(8):e72135[2020-01-19]http://journals.plos.org/plosone/artide?id=10.1371/journal.pone0072135. DOI: 10.1371/journal.pone.0072135 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Begaj T , Schaal S Sunlight and ultraviolet radiation-pertinent retinal implications and current management[J]Surv Ophthalmol 201863(2):174-192. DOI: 10.1016/j.survophthal.2017.09.002 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Cia D , Cubizolle A , Crauste C et al. Phloroglucinol protects retinal pigment epithelium and photoreceptor against all-trans-retinal-induced toxicity and inhibits A2E formation[J]J Cell Mol Med 201620(9):1651-1663. DOI: 10.1111/jcmm.12857 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Wenzel A , Grimm C , Samardzija M et al. Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration[J]Prog Retin Eye Res 200524(2):275-306. DOI: 10.1016/j.preteyeres.2004.08.002 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Youssef PN , Sheibani N , Albert DM . Retinal light toxicity[J]Eye (Lond) 201125(1):1-14. DOI: 10.1038/eye.2010.149 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Wu J , Seregard S , Algere PV . Photochemical damage of the retina[J]Surv Ophthalmol 200651(5):461-81.
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
陈松,Email: mocdef.6ab219999gnosnehc
B
所有作者均声明不存在利益冲突
C
安阳市科技攻关项目 (20180084)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号