综述
ENGLISH ABSTRACT
机器学习在角膜相关疾病辅助诊断中的应用
张子俊
梁庆丰 [综述]
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20200201-00045
Application of machine learning in auxiliary diagnosis of corneal related diseases
Zhang Zijun
Liang Qingfeng
Authors Info & Affiliations
Zhang Zijun
Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology&Visual Sciences Key Lab, Beijing 100005, China
Liang Qingfeng
Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology&Visual Sciences Key Lab, Beijing 100005, China
·
DOI: 10.3760/cma.j.cn115989-20200201-00045
768
182
0
0
2
0
PDF下载
APP内阅读
摘要

机器学习作为人工智能的主要技术方向,可帮助眼科医生解读与分析成像设备产生的大量数据,简化诊疗过程。圆锥角膜的分类和早期诊断是机器学习的一个重要应用实例。机器学习用于辅助诊断圆锥角膜的建模方式通常有神经网络法、决策树法,这些模型的敏感性和特异性均在85%以上,但由于圆锥角膜的研究参数不一致,且缺乏公共数据集来衡量算法的优劣,限制了其在临床上的普遍推广。角膜屈光手术术前评估存在数据量大、决策困难的临床问题,机器学习可辅助评估患者是否适合进行屈光手术,其特异性、敏感性均在90%以上,并可通过术前各种眼部参数预测术后视觉质量。另外机器学习在角膜内皮细胞密度计数、角膜上皮损伤程度评估方面都有应用。通过机器学习及大数据建模可协助医生进行角膜病的精准诊断和个性化评估,为角膜病诊疗奠定数据基础。本文对近年来机器学习在角膜相关疾病中的应用进展进行综述。

机器学习;角膜病;圆锥角膜;辅助诊断
ABSTRACT

Machine learning, as the main technical direction of artificial intelligence, can help ophthalmologists to interpret and analyze the large amount of data generated by imaging equipment, and also simplify the diagnosis and treatment process.The early diagnosis and classification of keratoconus became the most important application of machine learning.The modeling methods of machine learning for diagnosing keratoconus usually included neural network and decision tree method.The sensitivity and specificity of these models for diagnosing keratoconus were more than 85%.Because there were large number of research parameters for the diagnosis of keratoconus and no adequate public data sets, it was difficult to evaluate the advantages and disadvantages of different research methods, which limited the clinical application of machine learning in the evaluation of keratoconus.The corneal refractive surgery preoperative evaluation had clinical problems of large data volume and difficult decision-making.Machine learning can assist in evaluating whether the patient is suitable for refractive surgery, of which specificity and sensitivity were above 90%.It was also able to predict postoperative visual quality with ocular parameters.In addition, machine learning can also help us to count corneal endothelial cell density and assess corneal epithelial damage.Machine learning method and big data modeling evaluation can assist doctors in accurate diagnosis and personalized evaluation of keratopathy.This article reviewed the recent literature on the application progress of machine learning in corneal-related diseases in recent years.

Machine learning;Corneal diseases;Keratoconus;Auxiliary diagnosis
Liang Qingfeng, Email: mocdef.3ab61ykculfql
引用本文

张子俊,梁庆丰. 机器学习在角膜相关疾病辅助诊断中的应用[J]. 中华实验眼科杂志,2020,38(09):804-808.

DOI:10.3760/cma.j.cn115989-20200201-00045

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
人工智能(artificial intelligence,AI)是计算机研究领域的前沿学科,其目的是赋予计算机像人类一样的智力来解决实际问题 [ 1 ]。人工智能的实现,机器学习是其重要的途径之一,通过一些算法使计算机"学习"如何完成特定的任务。近年来,眼科影像学技术发展迅速,利用眼部图像提取有效数据、探寻疾病发展规律,是精准眼科学研究的重要内容。机器学习可对眼科疾病诊疗过程中产生的大量眼部影像学资料进行分析,寻找疾病发生发展的规律,建立起判读图像和预测诊断的模型,从而辅助临床医生实现眼病的精准诊断并给出临床建议。在角膜疾病评估诊断方面,已有多项研究将机器学习应用于圆锥角膜的早期诊断,角膜上皮、内皮细胞的计数和损伤评估,以及角膜屈光手术相关筛查等方面,本文对此进行综述。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Rahimy E Deep learning applications in ophthalmology[J]Curr Opin Ophthalmol 201829(3):254-260. DOI: 10.1097/ICU.0000000000000470 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Dilsizian SE , Siegel EL . Artificial intelligence in medicine and cardiac imaging:harnessing big data and advanced computing to provide personalized medical diagnosis and treatment[J]Curr Cardiol Rep 201416(1):441. DOI: 10.1007/s11886-013-0441-8 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Patel VL , Shortliffe EH , Stefanelli M et al. The coming of age of artificial intelligence in medicine[J]Artif Intell Med 200946(1):5-17. DOI: 10.1016/j.artmed.2008.07.017 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
de Sanctis U , Loiacono C , Richiardi L et al. Sensitivity and specificity of posterior corneal elevation measured by Pentacam in discriminating keratoconus/subclinical keratoconus[J]Ophthalmology 2008115(9):1534-1539. DOI: 10.1016/j.ophtha.2008.02.020 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Gordon-Shaag A , Millodot M , Ifrah R et al. Aberrations and topography in normal,keratoconus-suspect,and keratoconic eyes[J]Optom Vis Sci 201289(4):411-418. DOI: 10.1097/OPX.0b013e318249d727 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Maeda N , Klyce SD , Smolek MK et al. Automated keratoconus screening with corneal topography analysis[J]Invest Ophthalmol Vis Sci 199435(6):2749-2757.
返回引文位置Google Scholar
百度学术
万方数据
[7]
Rabinowitz YS . Videokeratographic indices to aid in screening for keratoconus[J]J Refract Surg 199511(5):371-379.
返回引文位置Google Scholar
百度学术
万方数据
[8]
Smolek MK , Klyce SD . Current keratoconus detection methods compared with a neural network approach[J]Invest Ophthalmol Vis Sci 199738(11):2290-2299.
返回引文位置Google Scholar
百度学术
万方数据
[9]
Belin MW , Khachikian SS . Keratoconus/ectasia detection with the Oculus Pentacam:Belin/Ambrósio enhanced ectasia display[J]Highlights Ophthalmol 200735(6):5-12.
返回引文位置Google Scholar
百度学术
万方数据
[10]
Chastang PJ , Borderie VM , Carvajal-Gonzalez S et al. Automated keratoconus detection using the EyeSys videokeratoscope[J]J Cataract Refract Surg 200026(5):675-683. DOI: 10.1016/s0886-3350(00)00303-5 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Twa MD , Parthasarathy S , Roberts C et al. Automated decision tree classification of corneal shape[J]Optom Vis Sci 200582(12):1038-1046. DOI: 10.1097/01.opx.0000192350.01045.6f .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Ruiz Hidalgo I , Rozema JJ , Saad A et al. Validation of an objective keratoconus detection system implemented in a scheimpflug tomographer and comparison with other methods[J]Cornea 201736(6):689-695. DOI: 10.1097/ICO.0000000000001194 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Kovács I , Miháltz K , Kránitz K et al. Accuracy of machine learning classifiers using bilateral data from a Scheimpflug camera for identifying eyes with preclinical signs of keratoconus[J]J Cataract Refract Surg 201642(2):275-283. DOI: 10.1016/j.jcrs.2015.09.020 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Issarti I , Consejo A , Jiménez-García M et al. Computer aided diagnosis for suspect keratoconus detection[J]Comput Biol Med 2019109:33-42. DOI: 10.1016/j.compbiomed.2019.04.024 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Yousefi S , Yousefi E , Takahashi H et al. Keratoconus severity identification using unsupervised machine learning[J/OL]PLoS One 201813(11):e0205998[2020-02-01]. http://www.ncbi.nlm.nih.gov/pubmed/30399144. DOI: 10.1371/journal.pone.0205998 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Lin SR , Ladas JG , Bahadur GG et al. A review of machine learning techniques for keratoconus detection and refractive surgery screening[J]Semin Ophthalmol 201934(4):317-326. DOI: 10.1080/08820538.2019.1620812 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Alarcón A , Rubiño M , Pééérez-Ocón F et al. Theoretical analysis of the effect of pupil size,initial myopic level,and optical zone on quality of vision after corneal refractive surgery[J]J Refract Surg 201228(12):901-906. DOI: 10.3928/1081597x-20121106-01 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Sayegh FN . Age and refraction in 46,000 patients as a potential predictor of refractive stability after refractive surgery[J]J Refract Surg 200925(8):747-751. DOI: 10.3928/1081597X-20090707-10 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Achiron A , Gur Z , Aviv U et al. Predicting refractive surgery outcome:machine learning approach with big data[J]J Refract Surg 201733(9):592-597. DOI: 10.3928/1081597X-20170616-03 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Yoo TK , Ryu IH , Lee G et al. Adopting machine learning to automatically identify candidate patients for corneal refractive surgery[J]NPJ Digit Med 20192:59. DOI: 10.1038/s41746-019-0135-8 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Bourne WM , Nelson LR , Hodge DO . Central corneal endothelial cell changes over a ten-year period[J]Invest Ophthalmol Vis Sci 199738(3):779-782.
返回引文位置Google Scholar
百度学术
万方数据
[22]
Waring GO , Bourne WM , Edelhauser HF et al. The corneal endothelium.Normal and pathologic structure and function[J]Ophthalmology 198289(6):531-590.
返回引文位置Google Scholar
百度学术
万方数据
[23]
Selig B , Vermeer KA , Rieger B et al. Fully automatic evaluation of the corneal endothelium from in vivo confocal microscopy[J/OL]BMC Med Imaging 201515:13[2020-02-01]. http://www.ncbi.nlm.nih.gov/pubmed/25928199. DOI: 10.1186/s12880-015-0054-3 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Sharif MS , Qahwaji R , Shahamatnia E et al. An efficient intelligent analysis system for confocal corneal endothelium images[J]Comput Methods Programs Biomed 2015122(3):421-436. DOI: 10.1016/j.cmpb.2015.09.003 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Scarpa F , Ruggeri A Development of a reliable automated algorithm for the morphometric analysis of human corneal endothelium[J]Cornea 201635(9):1222-1228. DOI: 10.1097/ICO.0000000000000908 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Vigueras-Guillen JP , Andrinopoulou ER , Engel A et al. Corneal endothelial cell segmentation by classifier-driven merging of oversegmented images[J]IEEE Trans Med Imaging 201837(10):2278-2289. DOI: 10.1109/TMI.2018.2841910 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Reynaud J , Beuerman RW , Khoobehi B et al. Confocal Hyperspectral Imaging of the Cornea[J]Invest Ophthalmol Vis Sci 200344(13):3600-3600.
返回引文位置Google Scholar
百度学术
万方数据
[28]
Mordant D J , Al-Abboud I , Muyo G et al. Spectral imaging of the retina[J]Eye 201125(3):309-320.
返回引文位置Google Scholar
百度学术
万方数据
[29]
Mordant D J , Al-Abboud I , Muyo G et al. Oxygen saturation measurements of the retinal vasculature in treated asymmetrical primary open-angle glaucoma using hyperspectral imaging[J]Eye 201428(10):1190-1200.
返回引文位置Google Scholar
百度学术
万方数据
[30]
Noor S , Michael K , Marshall S et al. Hyperspectral image enhancement and mixture deep-learning classification of corneal epithelium injuries[J/OL]Sensors(Basel) 201717(11):2644[2020-02-01]. http://www.ncbi.nlm.nih.gov/pubmed/29144388. DOI: 10.3390/s17112644 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
梁庆丰,Email: mocdef.3ab61ykculfql
B
所有作者均声明不存在利益冲突
C
北京市科委医药协同重点专题项目 (Z181100001918031)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号