综述
ENGLISH ABSTRACT
线粒体相关内质网膜与病原体诱导的炎症反应研究进展
陈雅静
陈淑珍
作者及单位信息
·
DOI: 10.3760/cma.j.cn112309-20191101-00360
Research progress in the relationship between the mitochondria-associated membranes and pathogen-induced inflammatory response
Chen Yajing
Chen Shuzhen
Authors Info & Affiliations
Chen Yajing
Department of Clinical Medicine, Xiamen Medical College, Xiamen 361023, China
Chen Shuzhen
Fujian Provincial Key Laboratory of Functional and Clinical Translational Medicine, Department of Basic Medicine, Xiamen Medical College, Xiamen 361023, China
·
DOI: 10.3760/cma.j.cn112309-20191101-00360
0
0
0
0
0
0
PDF下载
APP内阅读
摘要

线粒体相关内质网膜(mitochondria-associated membranes,MAMs)是内质网和线粒体外膜通过蛋白质连接组成的一个高度特化亚细胞区,许多蛋白质通过定位或招募到MAMs参与钙稳态维持、细胞凋亡、脂质合成与利用、细胞自噬等重要细胞事件,并为抗病毒信号转导和NOD样受体蛋白3(NLRP3)炎症小体组装提供平台。鉴于这些功能,MAMs在抵抗病原体感染中发挥重要作用,而病原体也进化出不同策略,靶向MAMs以逃避或拮抗宿主免疫应答,或通过调控MAMs功能为感染建立提供便利。病原体感染是引起炎症反应最常见的原因,急性炎症反应失调常引起一系列慢性炎症性疾病。本文将对MAMs功能与病原体诱导的炎症反应之间联系作一综述。

线粒体相关内质网膜;炎症反应;病原微生物;抗病毒信号;炎症小体
ABSTRACT

Mitochondria-associated membranes (MAMs) are highly specialized subcellular regions composed of the endoplasmic reticulum and mitochondrial outer membrane connected by proteins. They participate in several important cell events such as calcium homeostasis maintenance, cell apoptosis, lipid synthesis and utilization, and cell autophagy, and also provide a platform for antiviral signal transduction and Nod-like receptor protein-3 (NLRP3) inflammasome assembly. Thus, MAMs play an important role in resisting pathogen infection. However, pathogens have evolved different coping strategies such as targeting MAMs to escape or antagonize host immune response, or regulating the functions of MAMs to facilitate infection. The most common reason of inflammatory response is pathogen infection. The disorder of acute inflammatory response usually leads to a series of chronic inflammatory diseases. This review summarized the relationship between the functions of MAMs and pathogen-induced inflammatory response.

Mitochondria-associated membranes;Inflammatory response;Pathogenic microorganism;Antiviral signaling;Inflammasome
Chen Shuzhen, Email: mocdef.6ab21sutolzsc, Tel: 0086-592-2110642
引用本文

陈雅静,陈淑珍. 线粒体相关内质网膜与病原体诱导的炎症反应研究进展[J]. 中华微生物学和免疫学杂志,2020,40(09):727-732.

DOI:10.3760/cma.j.cn112309-20191101-00360

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
越来越多证据表明,细胞器不仅独立行使功能,还通过与其他细胞器相互作用调节许多重要的细胞过程。线粒体相关内质网膜(mitochondria-associated membranes,MAMs)是内质网和线粒体外膜通过蛋白质连接组成的一个高度特化亚细胞区,它参与细胞内钙稳态维持、脂质合成与利用、内质网应激、细胞凋亡、线粒体形态调节等多种细胞事件 [ 1 ]
炎症反应是机体对病理刺激产生的防御反应,根据持续时间长短可分为急性炎症和慢性炎症。在健康状态下,急性炎症可消除有害刺激,防止组织进一步损伤。急性炎症反应失调可引起慢性炎症,使机体长时间处于炎症状态下,引起一系列慢性炎症性疾病,如自身免疫性疾病、恶性肿瘤、糖尿病等 [ 2 ]。随着对MAMs研究的深入,发现MAMs可能在炎症反应发生发展中起关键作用,而病原体感染是引起炎症反应最常见的原因。本文将围绕MAMs在病原体诱导的炎症反应中的作用进行综述。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Herrera-Cruz MS , Simmen T . Of yeast, mice and men: MAMs come in two flavors[J]. Biol Direct, 2017,12(1):3. DOI: 10.1186/s13062-017-0174-5 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Nasef NA , Mehta S , Ferguson LR . Susceptibility to chronic inflammation: an update[J]. Arch Toxicol, 2017,91(3):1131-1141. DOI: 10.1007/s00204-016-1914-5 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Vance JE . Phospholipid synthesis in a membrane fraction associated with mitochondria[J]. J Biol Chem, 1990,265(13):7248-7256.
返回引文位置Google Scholar
百度学术
万方数据
[4]
Giacomello M , Pellegrini L . The coming of age of the mitochondria-ER contact: a matter of thickness[J]. Cell Death Differ, 2016,23(9):1417-1427. DOI: 10.1038/cdd.2016.52 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Wang X , Wen Y , Dong J ,et al. Systematic in-depth proteomic analysis of mitochondria-associated endoplasmic reticulum membranes in mouse and human testes[J]. Proteomics, 2018,18(14):e1700478. DOI: 10.1002/pmic.201700478 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Janikiewicz J , Szymański J , Malinska D ,et al. Mitochondria-associated membranes in aging and senescence: structure, function, and dynamics[J]. Cell Death Dis, 2018,9(3):332. DOI: 10.1038/s41419-017-0105-5 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Pedriali G , Rimessi A , Sbano L ,et al. Regulation of endoplasmic reticulum-mitochondria Ca 2+ transfer and its importance for anti-cancer therapies [J]. Front Oncol, 2017,7:180. DOI: 10.3389/fonc.2017.00180 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Sharon-Friling R , Goodhouse J , Colberg-Poley AM ,et al. Human cytomegalovirus pUL37x1 induces the release of endoplasmic reticulum calcium stores[J]. Proc Natl Acad Sci USA, 2006,103(50):19117-19122.
返回引文位置Google Scholar
百度学术
万方数据
[9]
Scrima R , Piccoli C , Moradpour D ,et al. Targeting endoplasmic teticulum and/or mitochondrial Ca 2+ fluxes as therapeutic strategy for HCV infection [J]. Front Chem, 2018,6:73. DOI: 10.3389/fchem.2018.00073 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Asmat TM , Tenenbaum T , Jonsson AB ,et al. Impact of calcium signaling during infection of Neisseria meningitidis to human brain microvascular endothelial cells [J]. PLoS One, 2014,9(12):e114474. DOI: 10.1371/journal.pone.0114474 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Pfeffer CM , Singh ATK . Apoptosis: a target for anticancer therapy[J]. Int J Mol Sci, 2018,19(2). .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Danese A , Patergnani S , Bonora M ,et al. Calcium regulates cell death in cancer: Roles of the mitochondria and mitochondria-associated membranes (MAMs)[J]. Biochim Biophys Acta Bioenerg, 2017,1858(8):615-627. DOI: 10.1016/j.bbabio.2017.01.003 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Soggiu A , Roncada P , Bonizzi L ,et al. Role of mitochondria in host-pathogen interaction[J]. Adv Exp Med Biol, 2019,1158:45-57. DOI: 10.1007/978-981-13-8367-0_3 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Spector C , Mele AR , Wigdahl B ,et al. Genetic variation and function of the HIV-1 Tat protein[J]. Med Microbiol Immunol, 2019,208(2):131-169. DOI: 10.1007/s00430-019-00583-z .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Hu WS , Hughes SH . HIV-1 reverse transcription[J]. Cold Spring Harb Perspect Med, 2012,2(10). .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Kaval KG , Garsin DA . Ethanolamine utilization in bacteria[J]. mBio, 2018,9(1). .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Salo VT , Ikonen E . Moving out but keeping in touch: contacts between endoplasmic reticulum and lipid droplets[J]. Curr Opin Cell Biol, 2019,57:64-70. DOI: 10.1016/j.ceb.2018.11.002 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Zhang J , Lan Y , Sanyal S . Modulation of lipid droplet metabolism-a potential target for therapeutic intervention in flaviviridae infections[J]. Front Microbiol, 2017,8:2286. DOI: 10.3389/fmicb.2017.02286 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Suzuki T . Hepatitis C virus replication[J]. Adv Exp Med Biol, 2017,997:199-209. DOI: 10.1007/978-981-10-4567-7_15 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Roingeard P , Melo RC . Lipid droplet hijacking by intracellular pathogens[J]. Cell Microbiol, 2017,19(1). DOI: 10.1111/cmi.12688 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
vallochi AL , Teixeira L , Oliveira KDS ,et al. Lipid droplet, a key player in host-parasite interactions[J]. Front Immunol, 2018,9:1022. DOI: 10.3389/fimmu.2018.01022 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Tagaya M , Arasaki K . Regulation of mitochondrial dynamics and autophagy by the mitochondria-associated membrane[J]. Adv Exp Med Biol, 2017,997:33-47. DOI: 10.1007/978-981-10-4567-7_3 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Hamasaki M , Furuta N , Matsuda A ,et al. Autophagosomes form at ER-mitochondria contact sites[J]. Nature, 2013,495(7441):389-393. DOI: 10.1038/nature11910 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Matsuzawa-Ishimoto Y , Hwang S , Cadwell K . Autophagy and inflammation[J]. Annu Rev Immunol, 2018,36:73-101. DOI: 10.1146/annurev-immunol-042617-053253 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Escoll P , Buchrieser C . Metabolic reprogramming: an innate cellular defence mechanism against intracellular bacteria? [J]. Curr Opin Immunol, 2019,60:117-123. DOI: 10.1016/j.coi.2019.05.009 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Siqueira MDS , Ribeiro RM , Travassos LH . Autophagy and its interaction with intracellular bacterial pathogens[J]. Front Immunol, 2018,9:935. DOI: 10.3389/fimmu.2018.00935 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Kim JK , Yuk JM , Kim SY ,et al. MicroRNA-125a inhibits autophagy activation and antimicrobial responses during mycobacterial infection[J]. J Immunol, 2015,194(11):5355-5365. DOI: 10.4049/jimmunol.1402557 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Zhou Y , He C , Wang L ,et al. Post-translational regulation of antiviral innate signaling[J]. Eur J Immunol, 2017,47(9):1414-1426. DOI: 10.1002/eji.201746959 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Misawa T , Takahama M , Saitoh T . Mitochondria-endoplasmic reticulum contact sites mediate innate immune responses[J]. Adv Exp Med Biol, 2017,997:187-197. DOI: 10.1007/978-981-10-4567-7_14 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Rieusset J . Mitochondria-associated membranes (MAMs): An emerging platform connecting energy and immune sensing to metabolic flexibility[J]. Biochem Biophys Res Commun, 2018,500(1):35-44. DOI: 10.1016/j.bbrc.2017.06.097 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Horner SM , Liu HM , Park HS ,et al. Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus[J]. Proc Natl Acad Sci USA, 2011,108(35):14590-14595. DOI: 10.1073/pnas.1110133108 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Chan YK , Gack MU . Viral evasion of intracellular DNA and RNA sensing[J]. Nat Rev Microbiol, 2016,14(6):360-373. DOI: 10.1038/nrmicro.2016.45 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Yoshizumi T , Ichinohe T , Sasaki O ,et al. Influenza A virus protein PB1-F2 translocates into mitochondria via Tom40 channels and impairs innate immunity[J]. Nat Commun, 2014,5:4713. DOI: 10.1038/ncomms5713 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Ran JS , Jin J , Zhang XX ,et al. Molecular characterization, expression and functional analysis of chicken STING[J]. Int J Mol Sci, 2018,19(12). .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Ng KW , Marshall EA , Bell JC ,et al. cGAS-STING and cancer: dichotomous roles in tumor immunity and development[J]. Trends Immunol, 2018,39(1):44-54. DOI: 10.1016/j.it.2017.07.013 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Tangsongcharoen C , Roytrakul S , Smith DR . Analysis of cellular proteome changes in response to ZIKV NS2B-NS3 protease expression[J]. Biochim Biophys Acta Proteins Proteom, 2019,1867(2):89-97. DOI: 10.1016/j.bbapap.2018.10.016 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Ni G , Ma Z , Damania B . cGAS and STING: At the intersection of DNA and RNA virus-sensing networks[J]. PLoS Pathog, 2018,14(8):e1007148. DOI: 10.1371/journal.ppat.1007148 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Hughes MM , O′Neill LAJ . Metabolic regulation of NLRP3[J]. Immunol Rev, 2018,281(1):88-98. DOI: 10.1111/imr.12608 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
陶然李伟尚世强. Gasdermin家族蛋白及其疾病相关性的研究进展[J]. 中华微生物学和免疫学杂志 2019,39(10):784-787. DOI: 10.3760/cma.j.issn.0254-5101.2019.10.010 .
返回引文位置Google Scholar
百度学术
万方数据
Tao R , Li W , Shang SQ . Research progress in Gasdermin family proteins and their association with diseases[J]. Chin J Microbiol Immunol, 2019,39(10):784-787. DOI: 10.3760/cma.j.issn.0254-5101.2019.10.010 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[40]
Zahid A , Li B , Kombe AJK ,et al. Pharmacological inhibitors of the NLRP3 inflammasome[J]. Front Immunol, 2019,10:2538. DOI: 10.3389/fimmu.2019.02538 .
返回引文位置Google Scholar
百度学术
万方数据
[41]
Liu Q , Zhang D , Hu D ,et al. The role of mitochondria in NLRP3 inflammasome activation[J]. Mol Immunol, 2018,103:115-124. DOI: 10.1016/j.molimm.2018.09.010 .
返回引文位置Google Scholar
百度学术
万方数据
[42]
Xiao Z , Jia B , Zhao X ,et al. Attenuation of lipopolysaccharide-induced acute lung injury by cyclosporine-a via suppression of mitochondrial DNA[J]. Med Sci Monit, 2018,24:7682-7688. DOI: 10.12659/MSM.909909 .
返回引文位置Google Scholar
百度学术
万方数据
[43]
Jo EK , Kim JK , Shin DM ,et al. Molecular mechanisms regulating NLRP3 inflammasome activation[J]. Cell Mol Immunol, 2016,13(2):148-159. DOI: 10.1038/cmi.2015.95 .
返回引文位置Google Scholar
百度学术
万方数据
[44]
Martine P , Chevriaux A , Derangère V ,et al. HSP70 is a negative regulator of NLRP3 inflammasome activation[J]. Cell Death Dis, 2019,10(4):256. DOI: 10.1038/s41419-019-1491-7 .
返回引文位置Google Scholar
百度学术
万方数据
[45]
Subramanian N , Natarajan K , Clatworthy MR ,et al. The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation[J]. Cell, 2013,153(2):348-361. DOI: 10.1016/j.cell.2013.02.054 .
返回引文位置Google Scholar
百度学术
万方数据
[46]
Ichinohe T , Yamazaki T , Koshiba T ,et al. Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection[J]. Proc Natl Acad Sci USA, 2013,110(44):17963-17968. DOI: 10.1073/pnas.1312571110 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
陈淑珍,Email: mocdef.6ab21sutolzsc,电话:0592-2110642
B
国家自然科学基金 (31901008)
福建省高校杰出青年科研人才培育计划,福建省大学生创新创业训练计划项目 (201812631013)
厦门市教育科学"十三五"规划课题 (1826)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号