实验研究
ENGLISH ABSTRACT
二甲双胍对糖尿病视网膜病变治疗作用的网络药理学分析
陈源
邢茜
黄正如
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20191215-00543
Network pharmacology analysis of metformin against diabetic retinopathy
Chen Yuan
Xing Qian
Huang Zhengru
Authors Info & Affiliations
Chen Yuan
Department of Ophthalmology, Changshu No.2 People's Hospital, Changshu 215500, China
Xing Qian
Department of Ophthalmology, Changshu No.2 People's Hospital, Changshu 215500, China
Huang Zhengru
Department of Ophthalmology, Changshu No.2 People's Hospital, Changshu 215500, China
·
DOI: 10.3760/cma.j.cn115989-20191215-00543
843
164
0
0
1
0
PDF下载
APP内阅读
摘要

目的通过网络药理学方法研究二甲双胍治疗糖尿病视网膜病变(DR)的分子药效机制。

方法自Pubchem数据库获取二甲双胍的化学结构,通过PharmMapper、SwissTargetPrediction及DrugBank数据库获取药物作用的靶点基因;通过GeneCards和DisGeNET获取数据库内DR的致病基因。取二甲双胍的作用靶点基因与DR致病基因的交集,将交集内的基因作为二甲双胍治疗DR的目标基因。通过STRING数据库构建目标基因的蛋白-蛋白互作网络。通过Metascape对目标基因进行生物本体论和功能通路分析。

结果获取了31个二甲双胍治疗DR的目标基因。这些基因的生物学过程主要富集于对缺氧的反应及核苷酸代谢等;细胞组件主要富集于微绒毛、细胞紧密连接等;分子功能主要富集于辅助因子结合、一氧化氮合成酶(NOS)活性等;功能通路富集于止血、血管内皮生长因子(VEGF)信号通路等。

结论二甲双胍主要通过影响细胞之间紧密连接、细胞缺氧反应、NOS以及VEGF信号通路等控制DR的进展。

二甲双胍;糖尿病视网膜病变;药理学;基因
ABSTRACT

ObjectiveTo explore the pharmacological molecular mechanisms of metformin against diabetic retinopathy (DR) based on network pharmacology approach.

MethodsAfter chemical constitution of metformin was acquired from Pubchem database, target genes of metformin were identified by PharmMapper, SwissTargetPrediction and DrugBank database, and the pathological genes were obtained from GeneCards and DisGeNET database.Subsequently, the intersection of metformin targets and pathologic targets of DR were served as therapeutic targets of metformin against DR.The construction of protein-protein interaction (PPI) network was constructed by STRING, gene ontology (GO) and functional pathway were analyzed by Metascape.

ResultsOverall 31 therapeutic target genes of metformin against DR were obtained.Biological process of the PPI network was mainly enriched in reactive oxygen species metabolic process and nucleotide metabolism; cellular component was mainly enriched in microvillus and adherens junction; molecular function was mainly enriched in cofactor binding and nitric oxide synthase (NOS) activity.Functional pathway was mainly enriched in hemostasis and signaling by vascular endothelial growth factor (VEGF).

ConclusionsMetformin prevents the development of DR mainly through affecting cellular tight junctions and reaction to hypoxia, modulating NOS and VEGF signaling pathways.

Metformin;Diabetic retinopathy;Pharmacology;Gene
Huang Zhengru, Email: mocdef.3ab61xoc2lcc
引用本文

陈源,邢茜,黄正如. 二甲双胍对糖尿病视网膜病变治疗作用的网络药理学分析[J]. 中华实验眼科杂志,2020,38(12):1011-1015.

DOI:10.3760/cma.j.cn115989-20191215-00543

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
二甲双胍是一种双胍类降糖药,是目前治疗2型糖尿病的首选药物之一。糖尿病视网膜病变(diabetic retinopathy,DR)是糖尿病的眼部主要并发症之一,是一种严重的致盲眼病。近期研究表明,服用二甲双胍的糖尿病患者其眼部并发症,如DR的发病率较服用其他降糖药物明显偏低 [ 1 , 2 ]。目前有关二甲双胍治疗DR药理机制的研究较少,具体机制尚不明确。网络药理学是基于系统生物学的理论,从多靶点的研究策略出发,将药物、靶点网络与生物系统网络相结合,以分析、观察药物对疾病干预和影响的新学科。通过网络药理学对药物进行研究有助于揭示药物作用机制,提高药物的治疗效果,降低毒性作用和不良反应。本课题组应用网络药理学分析二甲双胍对DR的治疗作用。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Maleškić S Kusturica J Gušić E et al. Metformin use associated with protective effects for ocular complications in patients with type 2 diabetes-observational study[J]Acta Med Acad 201746(2)∶116-123. DOI: 10.5644/ama2006-124.196 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Li Y Ryu C Munie M et al. Association of metformin treatment with reduced severity of diabetic retinopathy in type 2 diabetic patients[J/OL]J Diabetes Res 201820182801450[2020-05-25]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5952500/. DOI: 10.1155/2018/2801450 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Kim S Chen J Cheng T et al. PubChem 2019 update:improved access to chemical data[J/OL]Nucleic Acids Res 201947(D1)∶D1102-1109[2020-03-01]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6324075/. DOI: 10.1093/nar/gky1033 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Wang X Shen Y Wang S et al. PharmMapper 2017 update:a web server for potential drug target identification with a comprehensive target pharmacophore database[J/OL]Nucleic Acids Res 201745(W1)∶W356-W360[2020-03-12]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC57938401. DOI: 10.1093/nar/gkx374 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Daina A Michielin O Zoete V SwissTargetPrediction:updated data and new features for efficient prediction of protein targets of small molecules[J/OL]Nucleic Acids Res 201947(W1)∶W357-W364[2020-03-16]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6602486/. DOI: 10.1093/nar/gkz382 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Wishart DS Feunang YD Guo AC et al. DrugBank 5.0:a major update to the DrugBank database for 2018[J/OL]Nucleic Acids Res 201846(D1)∶D1074-D1082[2020-03-12]https://www.onacademic.com/detail/journal_1000040179676010_835c.html. DOI: 10.1093/nar/gkx1037 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Stelzer G Rosen N Plaschkes I et al. The GeneCards Suite:from gene data mining to disease genome sequence analyses[J/OL]Curr Protoc Bioinformatics 201654(1)∶1.30.1-1.30.33[2020-03-20]https://currentprotocols.onlinelibrary.wiley.com/doi/full/10.1002/cpbi.5. DOI: 10.1002/cpbi.5 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Piñero J Ramírez-Anguita JM Saüch-Pitarch J et al. The DisGeNET knowledge platform for disease genomics:2019 update[J/OL]Nucleic Acids Res 202048(D1)∶D845-845D855[2020-03-18]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7145631/. DOI: 10.1093/nar/gkz1021 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Szklarczyk D Gable AL Lyon D et al. STRING v11:protein-protein association networks with increased coverage,supporting functional discovery in genome-wide experimental datasets[J/OL]Nucleic Acids Res 201947(D1)∶D607-607D613[2020-03-23]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6323986/. DOI: 10.1093/nar/gky1131 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Zhou Y Zhou B Pache L et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets[J/OL]Nat Commun 201910(1)∶1523[2020-03-10]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6447622/. DOI: 10.1038/s41467-019-09234-6 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Ashburner M Ball CA Blake JA et al. Gene ontology:tool for the unification of biology.The Gene Ontology Consortium[J]Nat Genet 200025(1)∶25-29. DOI: 10.1038/75556 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
The Gene Ontology Consortium. The Gene Ontology Resource:20 years and still GOing strong[J/OL]Nucleic Acids Res 201947(D1)∶D330-D338[2020-03-23]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6323945/. DOI: 10.1093/nar/gky1055 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Fabregat A Jupe S Matthews L et al. The reactome pathway knowledgebase[J/OL]Nucleic Acids Res 201846(D1)∶D649-D655[2020-03-26]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5753187/. DOI: 10.1093/nar/gkx1132 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Lin TC Hwang DK Hsu CC et al. Protective effect of metformin against retinal vein occlusions in diabetes mellitus-A nationwide population-based study[J/OL]PLoS One 201712(11)∶e0188136[2020-05-26]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5685597/. DOI: 10.1371/journal.pone.0188136 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
张哲刘竹青刘巨平二甲双胍联合抗血管内皮生长因子药物治疗糖尿病视网膜病变的可能协同作用[J]中华眼底病杂志 201834(5)∶453-457. DOI: 10.3760/cma.j.issn.1005-1015.2018.05.008 .
返回引文位置Google Scholar
百度学术
万方数据
Zhang Z Liu ZQ Liu JP et al. The synergistic effect of metformin and anti-vascular endothelial growth factor in the treatment of diabetic retinopathy[J]Chin J Ocul Fundus Dis 201834(5)∶453-457. DOI: 10.3760/cma.j.issn.1005-1015.2018.05.008 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[16]
Kim YS Kim M Choi MY et al. Alpha-lipoic acid reduces retinal cell death in diabetic mice[J]Biochem Biophys Res Commun 2018503(3)∶1307-1314. DOI: 10.1016/j.bbrc.2018.07.041 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Kim YS Kim M Choi MY et al. Metformin protects against retinal cell death in diabetic mice[J]Biochem Biophys Res Commun 2017492(3)∶397-403. DOI: 10.1016/j.bbrc.2017.08.087 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Han J Li Y Liu X et al. Metformin suppresses retinal angiogenesis and inflammation in vitro and in vivo [J/OL]PLoS One 201813(3)∶e0193031[2020-05-25]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5841739/. DOI: 10.1371/journal.pone.0193031 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
韩静闫小龙 Qiao Xiaoxi . 二甲双胍对炎症状态下人视网膜血管内皮细胞生物学行为的保护作用及其机制[J]中华实验眼科杂志 201735(7)∶581-585. DOI: 10.3760/cma.j.issn.2095-0160.2017.07.002 .
返回引文位置Google Scholar
百度学术
万方数据
Han J Yan XL Qiao XX . Protection effects of metformin on biological behaviour of human vascular endothelial cells under inflammatory conditions[J]Chin J Exp Ophthalmol 201735(7)∶581-585. DOI: 10.3760/cma.j.issn.2095-0160.2017.07.002 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[20]
Yi QY Deng G Chen N et al. Metformin inhibits development of diabetic retinopathy through inducing alternative splicing of VEGF-A[J/OL]Am J Transl Res 20168(9)∶3947-3954[2020-05-25]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5040692/.
返回引文位置Google Scholar
百度学术
万方数据
[21]
Al-Kharashi AS . Role of oxidative stress,inflammation,hypoxia and angiogenesis in the development of diabetic retinopathy[J]Saudi J Ophthalmol 201832(4)∶318-323. DOI: 10.1016/j.sjopt.2018.05.002 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Li Q Verma A Han PY et al. Diabetic eNOS-knockout mice develop accelerated retinopathy[J]Invest Ophthalmol Vis Sci 201051(10)∶5240-5246. DOI: 10.1167/iovs.09-5147 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Othman R Vaucher E Couture R Bradykinin type 1 receptor-inducible nitric oxide synthase:a new axis implicated in diabetic retinopathy[J/OL]Front Pharmacol 201910300[2020-03-24]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6449803/. DOI: 10.3389/fphar.2019.00300 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
An H He L Current understanding of metformin effect on the control of hyperglycemia in diabetes[J/OL]J Endocrinol 2016228(3)∶R97-106[2020-03-06]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5077246/. DOI: 10.3389/fphar.2019.00300 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Yu JW Deng YP Han X et al. Metformin improves the angiogenic functions of endothelial progenitor cells via activating AMPK/eNOS pathway in diabetic mice[J/OL]Cardiovasc Diabetol 20161588[2020-03-07]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4912824/. DOI: 10.1186/s12933-016-0408-3 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Sambe T Mason RP Dawoud H et al. Metformin treatment decreases nitroxidative stress,restores nitric oxide bioavailability and endothelial function beyond glucose control[J]Biomed Pharmacother 201898149-156. DOI: 10.1016/j.biopha.2017.12.023 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Fan H Yu X Zou Z et al. Metformin suppresses the esophageal carcinogenesis in rats treated with NMBzA through inhibiting AMPK/mTOR signaling pathway[J]Carcinogenesis 201940(5)∶669-679. DOI: 10.1093/carcin/bgy160 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Hu J Zhang J Zhu B Protective effect of metformin on a rat model of lipopolysaccharide-induced preeclampsia[J]Fundam Clin Pharmacol 201933(6)∶649-658. DOI: 10.1111/fcp.12501 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Lós DB Oliveira WH Duarte-Silva E et al. Preventive role of metformin on peripheral neuropathy induced by diabetes[J/OL]Int Immunopharmacol 201974105672[2020-03-24]https://www.sciencedirect.com/science/article/pii/S1567576919306812. DOI: 10.1016/j.intimp.2019.05.057 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
黄正如,Email: mocdef.3ab61xoc2lcc
B

陈源:论文操作、论文撰写、数据整理、统计分析;黄正如、邢茜:论文修改

C
所有作者均声明不存在利益冲突
D
江苏省卫计委医学科研课题面上项目 (H2017001)
苏州市科技发展计划项目 (SYSD2019017)
常熟市卫健委科技发展计划项目 (cswsq201907)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号