实验研究
ENGLISH ABSTRACT
牡荆苷对大鼠视网膜缺血-再灌注损伤模型中神经节细胞的保护作用
李漫丽
范珂
崔红培
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20200509-00319
Protective effect of vitexin on retinal ganglion cells in rat retinal ischemia-reperfusion injury model
Li Manli
Fan Ke
Cui Hongpei
Authors Info & Affiliations
Li Manli
Department of Ophthalmology, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
Fan Ke
Department of Ophthalmology, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
Cui Hongpei
Department of Ophthalmology, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
·
DOI: 10.3760/cma.j.cn115989-20200509-00319
0
0
0
0
0
0
PDF下载
APP内阅读
摘要

目的探讨牡荆苷对大鼠视网膜缺血-再灌注(RIR)引起的视网膜神经节细胞(RGCs)氧化应激损伤的保护作用及其可能的作用机制。

方法将60只SPF级雄性SD大鼠按照随机数字表法随机分为正常对照组、模型组和牡荆苷组,均以右眼为实验眼。模型组和牡荆苷组大鼠采用前房灌注方法建立RIR模型,牡荆苷组大鼠建模后每日按照25 mg/kg剂量腹腔内注射牡荆苷生理盐水溶液,模型组大鼠腹腔内注射相同剂量的生理盐水,连续给药7 d。正常对照组大鼠右眼仅行前房穿刺而不升高眼压,同时腹腔内注射相同剂量的生理盐水。造模后7 d过量麻醉法处死大鼠,采用组织病理学染色法检测大鼠视网膜厚度和RGCs数量,采用逆行荧光金染色标记法检测RGCs密度,采用TUNEL染色法检测RGCs凋亡情况,采用比色法检测视网膜组织中超氧化物歧化酶(SOD)活性和丙二醛(MDA)、一氧化氮(NO)浓度,采用Western blot法检测大鼠视网膜组织细胞质Nrf2、血红素加氧酶-1(HO-1)、NQO1、细胞核Nrf2蛋白表达。

结果模型组大鼠视网膜厚度为(90.21±3.55)μm,明显低于正常对照组的(128.20±5.31)μm和牡荆苷组的(119.65±6.14)μm,差异均有统计学意义(均 P<0.05)。模型组单位面积RGCs数量为(1 300.85±14.00)个/mm 2,明显低于正常对照组的(2 330.12±15.05)个/mm 2和牡荆苷组的(1 921.64±11.78)个/mm 2,差异均有统计学意义(均 P<0.05)。模型组TUNEL阳性RGCs比率为(68.34±5.04)%,明显高于正常对照组的(3.01±0.18)%和牡荆苷组的(35.51±2.04)%,差异均有统计学意义(均 P<0.05)。模型组大鼠视网膜组织中SOD活性明显低于正常对照组和牡荆苷组,MDA、NO摩尔浓度明显高于正常对照组和牡荆苷组,差异均有统计学意义(均 P<0.05)。模型组大鼠视网膜组织中细胞质Nrf2蛋白相对表达量明显低于正常对照组,HO-1、NQO1和细胞核Nrf2蛋白相对表达量明显高于正常对照组,差异均有统计学意义(均 P<0.05);牡荆苷组大鼠视网膜组织中细胞质Nrf2蛋白相对表达量明显低于模型组和正常对照组,HO-1、NQO1和细胞核Nrf2蛋白相对表达量明显高于模型组和正常对照组,差异均有统计学意义(均 P<0.05)。

结论牡荆苷能减少RGCs凋亡,缓解RIR引起的大鼠视网膜氧化应激损伤,这一作用可能是通过活化Nrf2相关信号通路而实现的。

视网膜缺血-再灌注;牡荆苷;氧化应激;Nrf2信号通路;大鼠
ABSTRACT

ObjectiveTo explore the protective effect of vitexin on retinal ganglion stem cells (RGCs) from oxidative stress caused by retinal ischemia-reperfusion (RIR) in rats and its possible mechanism.

MethodsSixty male SD rats were randomly divided into the model group, vitexin group and normal control group by random number table, with 20 rats in each group.The right eyes were taken as experimental eyes.Rats in the model group and the vitexin group were treated with anterior chamber perfusion to establish RIR models.Rats in the vitexin group were given intraperitoneal injection of vitexin at a dose of 25 mg/(kg·d) for 7 days.Rats in the model group were intraperitoneally injected with the same volume of normal saline.For the normal control group, the experimental eyes underwent anterior chamber puncture without increasing the intraocular pressure, and were intraperitoneally injected with the same volume of normal saline.On the 7th day following modeling, the rats were sacrificed by overdose anesthesia.Histopathology staining was used to detect the thickness of retina and the number of RGCs.Retrograde tracing with Fluoro-Gold was used to detect the density of RGCs.TUNEL staining was used to detect the apoptosis of RGCs.Colorimetric method was used to detected superoxidate dismutase (SOD) activity and concentration of malondialdehyde (MDA) and nitric oxide (NO). Western blot method was used to detect the relative expression levels of cytoplasmic Nrf2, HO-1, NQO1, nuclear Nrf2 proteins in rat retina.The use and care of animals followed the ARVO Statement.This study protocol was approved by the Experimental Animal Ethics Committee of Henan Eye Hospital (No.HNEECA-2019-04).

ResultsThe retinal thickness was (90.21±3.55)μm in the model group, which was significantly lower than (128.20±5.31)μm in the normal control group and (119.65±6.14)μm in the vitexin group, and the differences were statistically significant (both at P<0.05). The average density of RGCs was (1 300.85±14.00)/mm 2 in the model group, which was significantly lower than(2 330.12±15.05)/mm 2 in the normal control group and (1 921.64±11.78)/mm 2 in the vitexin group, and the differences were statistically significant (both at P<0.05). The rate of TUNEL positive RGCs was (68.34±5.04)% in the model group, which was significantly higher than (3.01±0.18)% in the normal control group and (35.51±2.04)% in the vitexin group, and the differences were statistically significant (both at P<0.05). Compared with the normal control group and the vitexin group, the SOD activity in the retinal tissue of the rats was lower and the concentrations of MDA and NO were higher in the model group, and the differences were statistically significant (all at P<0.05). The expression level of cytoplasmic Nrf2 protein was the lowest in the vitexin group, then following the model group and the normal control group, and the relative expression levels of HO-1, NQO1 and nuclear Nrf2 protein were the highest in the vitexin group, then followed the model group and normal control group, and the differences were statistically significant (all at P<0.05).

ConclusionsVitexin can reduce the apoptosis of RGCs and alleviate oxidative stress damage of retina in RIR rat model.This protective effect may be achieved by activating Nrf2-related signaling pathway.

Retinal ischemia-reperfusion;Vitexin;Oxidative stress;Nrf2 signaling pathway;Rats
Fan Ke, Email: mocdef.6ab212791eknaf
引用本文

李漫丽,范珂,崔红培. 牡荆苷对大鼠视网膜缺血-再灌注损伤模型中神经节细胞的保护作用[J]. 中华实验眼科杂志,2021,39(03):191-197.

DOI:10.3760/cma.j.cn115989-20200509-00319

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
视网膜缺血-再灌注损伤(retinal ischemia-reperfusion injury,RIR)是一种复杂的病理过程,多见于糖尿病视网膜病变、急性闭角型青光眼、视网膜中央动静脉阻塞等缺血性眼部疾病 [ 1 ]。研究表明,视网膜缺血-再灌注过程中,由于机体抗氧化系统的不平衡,如超氧化物歧化酶(superoxide dismutase,SOD)活性的降低,导致细胞内活性氧簇(reactive oxygen species,ROS)过度堆积,诱发视网膜神经节细胞(retinal ganglion cells,RGCs)凋亡,导致大鼠视力不可逆丧失 [ 3 , 4 ]。牡荆苷是金莲花、红草等毛茛科植物的有效成分,属于黄酮碳苷类化合物,难溶于水。研究证实,牡荆苷对脑缺血-再灌注大鼠神经功能具有保护作用,可能与调节辅助性T淋巴(helper T lymphocyte,Th)1/Th2细胞平衡向Th2漂移、减轻脑细胞DNA损伤有关 [ 5 ]。牡荆苷还可减轻急性脑缺血再灌注大鼠氧化应激反应,推测与调控核因子E2相关因子2(nuclear factor E2-related factor 2,Nrf2)/抗氧化反应元件(antioxidant response element,ARE)信号通路,上调Nrf2的基因和蛋白表达,增强机体的抗氧化应激反应能力有关 [ 6 ]。然而,牡荆苷对RIR引起的氧化应激损伤是否有保护作用,目前尚未见报道。本研究探讨牡荆苷对RIR模型大鼠视网膜的保护作用及其抗氧化机制。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
杨佩瑶赵军张娟美芍药苷通过调控NLRP3炎症小体保护视网膜缺血性损伤[J]中华实验眼科杂志 201836(12):920-924. DOI: 10.3760/cma.j.issn.2095.0160.2018.12.006 .
返回引文位置Google Scholar
百度学术
万方数据
Yang PY , Zhao J , Zhang JM et al. The protective effect of paeoniflorin in retina ischemia animal model through regulation of NLRP3 inflammasomes[J]Chin J Exp Ophthalmol 201836(12):920-924. DOI: 10.3760/cma.j.issn.2095.0160.2018.12.006 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[2]
Luo J , He T , Yang J et al. SIRT1 is required for the neuroprotection of resveratrol on retinal ganglion cells after retinal ischemia-reperfusion injury in mice[J]Graefe's Arch Clin Exp Ophthalmol 2020258(2):335-344. DOI: 10.1007/s00417-019-04580-z .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Qin X , Li N , Zhang M et al. Tetrahedral framework nucleic acids prevent retina ischemia-reperfusion injury from oxidative stress via activating the Akt/Nrf2 pathway[J/OL]Nanoscale 201911(43):20667-20675[2020-02-16]http://www.ncbi.nlm.nih.gov/pubmed/31642452. DOI: 10.1039/c9nr07171g .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Zhou C , Luo D , Xia W et al. Nuclear factor (Erythroid-Derived 2)-like 2 (Nrf2) contributes to the neuroprotective effects of histone deacetylase inhibitors in retinal ischemia-reperfusion injury[J]Neuroscience 2019418:25-36. DOI: 10.1016/j.neuroscience.2019.08.027 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
刘磊吴一飞牡荆苷对急性脑缺血再灌注大鼠的神经保护作用及对其Th1/Th2漂移的影响[J]中草药 201950(11):2645-2650. DOI: 10.7501/j.issn.0253-2670.2019.11.021 .
返回引文位置Google Scholar
百度学术
万方数据
Liu L , Wu YF . Neuroprotective effect of vitexin on acute cerebral ischemia reperfusion rats and its effect on Th1/Th2 drift[J]Chin trad herbal drugs 201950(11):2645-2650. DOI: 10.7501/j.issn.0253-2670.2019.11.021 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[6]
刘磊张静文张新玥牡荆苷调控Nrf2/ARE通路减轻急性脑缺血再灌注大鼠氧化应激反应研究[J]中草药 202051(5):1287-1293. DOI: 10.7501/j.issn.0253-2670.2020.05.027 .
返回引文位置Google Scholar
百度学术
万方数据
Liu L , Zhang JW , Zhang XY . Effect of vitexin on Nrf2/ARE pathway in alleviating oxidative stress in rats with acute cerebral ischemia-reperfusion[J]Chin trad herbal drugs 202051(5):1287-1293. DOI: 10.7501/j.issn.0253-2670.2020.05.027 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[7]
颜娟郑茂东崔玉环牡荆苷对脑缺血再灌注损伤小鼠抗氧化酶的影响[J]中国医药导报 201613(33):12-15,20.
返回引文位置Google Scholar
百度学术
万方数据
Yan J , Zheng MD , Cui YH et al. Effects of vitexin on antioxidant enzymes in cerebral ischemia-reperfusion injury mice[J]Chin Med Guides 201613(33):12-15,20.
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[8]
张雪孙大卫视网膜缺血-再灌注损伤干预治疗新进展[J]中华实验眼科杂志 201735(5):463-467. DOI: 10.3760/cma.j.issn.2095-0160.2017.05.016 .
返回引文位置Google Scholar
百度学术
万方数据
Zhang X , Sun DW . Research progress of intervention treatment on the retinal ischemia-reperfusion injury[J]Chin J Exp Ophthalmol 201735(5):463-467. DOI: 10.3760/cma.j.issn.2095-0160.2017.05.016 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[9]
李娟娟陈晨张利伟缺血-再灌注损伤鼠模型中视网膜微循环的结构损伤[J]中华实验眼科杂志 201937(1):5-9. DOI: 10.3760/cma.j.issn.2095-0160.2019.01.002 .
返回引文位置Google Scholar
百度学术
万方数据
Li JJ , Chen C , Zhang LW et al. Structural changes of retinal microcirculation in mouse model of ischemia-reperfusion injury[J]Chin J Exp Ophthalmol 201937(1):5-9. DOI: 10.3760/cma.j.issn.2095-0160.2019.01.002 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[10]
Yan H , Peng Y , Huang W et al. The protective effects of αB-crystallin on ischemia-reperfusion injury in the rat retina[J/OL]J Ophthalmol 20172017:7205408[2020-04-29]http://www.ncbi.nlm.nih.gov/pubmed/29098085. DOI: 10.1155/2017/7205408 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
曹丽静卢文胜川芎嗪对高眼压大鼠氧化应激及视网膜神经节细胞损伤的影响[J]中国临床药理学杂志 202036(5):525-527. DOI: 10.13699/j.cnki.1001-6821.2020.05.013 .
返回引文位置Google Scholar
百度学术
万方数据
Cao LJ , Lu WS . Effect of ligustrazine on oxidative stress and retinal ganglion cells damage of high intraocular pressure in rats[J]Chin J Clin Pharmacol 202036(5):525-527. DOI: 10.13699/j.cnki.1001-6821.2020.05.013 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[12]
Kars ME , Toklu Y , Arkan Yorgun M et al. Electrolyte,nitric oxide and oxidative stress levels of aqueous humor in patients with retinal detachment and silicone oil tamponade[J]Curr Eye Res 202045(11):1443-1450. DOI: 10.1080/02713683.2020.1749668 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Nurdiana S , Goh YM , Hafandi A et al. Improvement of spatial learning and memory,cortical gyrification patterns and brain oxidative stress markers in diabetic rats treated with Ficus deltoidea leaf extract and vitexin[J]J Tradit Complement Med 20188(1):190-202. DOI: 10.1016/j.jtcme.2017.05.006 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Xie CL , Li JL , Xue EX et al. Vitexin alleviates ER-stress-activated apoptosis and the related inflammation in chondrocytes and inhibits the degeneration of cartilage in rats[J]Food Funct 20189(11):5740-5749. DOI: 10.1039/c8fo01509k .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Ma TJ , Lan DH , He SZ et al. Nrf2 protects human lens epithelial cells against H2O2-induced oxidative and ER stress:The ATF4 may be involved[J]Exp Eye Res 2018169:28-37. DOI: 10.1016/j.exer.2018.01.018 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Zhang D , Li M Puerarin prevents cataract development and progression in diabetic rats through Nrf2/HO-1 signaling[J]Mol Med Rep 201920(2):1017-1024. DOI: 10.3892/mmr.2019.10320 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Hui Q , Karlstetter M , Xu Z et al. Inhibition of the Keap1-Nrf2 protein-protein interaction protects retinal cells and ameliorates retinal ischemia-reperfusion injury[J]Free Radic Biol Med 2020146:181-188. DOI: 10.1016/j.freeradbiomed.2019.10.414 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Xu Z , Cho H , Hartsock MJ et al. Neuroprotective role of Nrf2 for retinal ganglion cells in ischemia-reperfusion[J]J Neurochem 2015133(2):233-241. DOI: 10.1111/jnc.13064 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Lu Y , Yu T , Liu J et al. Vitexin attenuates lipopolysaccharide-induced acute lung injury by controlling the Nrf2 pathway[J/OL]PLoS One 201813(4):e0196405[2020-04-23]http://www.ncbi.nlm.nih.gov/pubmed/29694408. DOI: 10.1371/journal.pone.0196405 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
范珂,邮箱: mocdef.6ab212791eknaf
B
所有作者均声明不存在利益冲突
C
河南省科技研发专项项目 (172102310094)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号