实验研究
ENGLISH ABSTRACT
富血小板血浆在兔外伤性视神经损伤中的修复作用及其机制
李琳玲
邢怡桥
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20200701-00468
Repair effect of platelet-rich plasma on traumatic optic nerve injury in rabbits and its mechanism
Li Linling
Xing Yiqiao
Authors Info & Affiliations
Li Linling
Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430001, China
Li Linling is now working at Shenzhen Maternity & Child Healthcare Hospital, Shenzhen 518000, China
Xing Yiqiao
Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430001, China
·
DOI: 10.3760/cma.j.cn115989-20200701-00468
483
58
0
0
3
0
PDF下载
APP内阅读
摘要

目的研究自体富血小板血浆(PRP)对兔外伤性视神经损伤及视网膜的修复作用及机制。

方法选取清洁级成年新西兰白兔40只,构建兔右眼视神经钳夹损伤模型,将造模成功的36只新西兰白兔按照随机数表法随机分为模型对照组、生理盐水对照组和PRP组,每组12只,均以右眼为实验眼,另取12只健康未造模兔作为正常对照组。抽取兔自体血制备PRP,造模后每隔1 d分别在PRP组和生理盐水组实验眼球后近视神经损伤处注射20 μl PRP和相同体积的生理盐水,共注射10次。正常对照组实验兔不做注射干预。分别在造模后30 d和60 d过量麻醉法处死各组3只实验兔,摘取右侧眼球和视神经,采用组织病理学方法观察视网膜和视神经的形态学变化,并计算视网膜神经节细胞(RGCs)密度、视网膜神经纤维层(RNFL)厚度变化;采用免疫组织化学染色法比较凋亡蛋白家族caspase-3、B细胞淋巴瘤-2(Bcl-2)的表达;采用实时荧光定量PCR和Western blot法检测视神经和视网膜脑源性神经生长因子(BDNF)和生长相关蛋白43(Gap-43)的mRNA和蛋白表达。

结果PRP组造模后30 d和60 d时RNFL厚度值分别为(6.60±1.16)和(6.89±1.21)μm,均大于模型对照组相应时间点的(4.80±0.43)和(2.18±0.23)μm,差异均有统计学意义(均 P<0.05)。PRP组造模后30 d和60 d时RGCs数量分别为(13.00±1.00)/视野和(20.00±2.65)/视野,均多于模型对照组相应时间点的(6.33±0.58)和(10.33±1.53)/视野,差异均有统计学意义(均 P<0.05)。PRP组造模后60 d时的RGCs数量较造模后30 d时显著增加,差异有统计学意义( P<0.05);造模后30 d和60 d,生理盐水组、模型对照组视网膜caspase-3蛋白阳性表达 A值均明显高于正常对照组和PRP组,PRP组Bcl-2蛋白阳性表达 A值均较模型对照组和生理盐水组明显升高,差异均有统计学意义( P<0.05)。PRP组视网膜和视神经中BDNF和Gap-43的mRNA水平和蛋白含量均较模型对照组有不同程度增高,PRP组造模后60 d时各组织中BDNF和Gap-43的mRNA和蛋白相对表达量均较造模后30 d时水平有所降低,差异均有统计学意义(均 P<0.05)。

结论PRP可有效抑制视神经损伤后RGCs的凋亡及视网膜的继发性损伤,促进RGCs抗凋亡作用,从而减缓外伤性视神经病变后的视网膜和视神经损伤,同时通过上调神经生长因子的表达促进视神经和视网膜的修复。

富血小板血浆;视神经损伤;视网膜神经节细胞;脑源性神经生长因子;生长相关蛋白-43
ABSTRACT

ObjectiveTo study the therapeutic effect and mechanism of autologous platelet-rich plasma (PRP) on rabbit traumatic optic neuropathies (TON) and retina.

MethodsForty adult New Zealand white rabbits were selected to establish the optic nerve clamp injury model in their right eyes.According to the random number table method, 36 New Zealand white rabbits with effective model were randomly divided into model control group, normal saline control group and PRP group, 12 for each group.Another 12 healthy rabbits served as the normal control group.Rabbit autologous blood was collected to prepare PRP.The retrobulbar 20 μl PRP/20 μl saline solution injection was administered every two days near the injury after modeling according to grouping.The injection was carried out for 10 times.There was no other interference administrated to the model control group except the normal anti-infective treatment.No interference was given to the normal control group.At 30 and 60 days after modeling, the eyeballs and optic nerves of right eyes were harvested through sacrificing the animals by anesthetic overdose, three eyes for each time.Histopathological assessments were performed to observe the morphological changes of retina and optic nerve, and to evaluate the changes of retinal ganglion cells (RGCs) density and retinal nerve fiber layer (RNFL) thickness.Immunohistochemistry was used to assess the expressions of apoptosis factors caspase-3 and B cell lymphoma-2(Bcl-2). Quantitative real-time PCR and Western blot were used to detect the mRNA and protein expressions of brain-derived neurotrophic factor (BDNF) and growth associated protein-43 (Gap-43). This study protocol was approved by the Experimental Animal Ethics Committee of Wuhan University (No.E2019072805). The use and care of animals complied with ARVO statement.

ResultsThe thickness of RNFL and number of RGCs at 30 days and 60 days after modeling were (6.60±1.16) μm, (6.89±1.21) μm, (13.00±1.00)/field of vision, (20.00±2.65)/field of vision in the PRP group, respectively, and were (4.80±0.43)μm, (2.18±0.23)μm, (6.33±0.58)/field of vision, (10.33±1.53)/field of vision in the model control group, respectively.The number of RGCs in the PRP group at 60 days was higher than that at 30 days after modeling, the number of RGCs in the PRP group was higher than that in the model control group, the thickness of RNFL in the PRP group was higher than that in the model control group; and the differences were statistically significant (all at P<0.05). At 30 and 60 days after modeling, the positive expression A value of caspase-3 protein in the normal saline group and model control group were higher than those in the normal control group and PRP group, while the positive expression A value of Bcl-2 protein in the PRP group was higher than those in the model control group and normal saline group, and the differences were statistically significant (all at P<0.05). The mRNA level and protein content of BDNF and Gap-43 in the retina and optic nerves at 30 days and 60 days after modeling in the PRP group were higher than those in the model control group, and the differences were statistically significant (all at P<0.05), but the mRNA and protein expression levels of BDNF and Gap-43 in different tissues in the PRP group at 60 days after modeling were lower than those at 30 days after modeling ( P<0.05).

ConclusionsPRP can effectively inhibit the apoptosis of RGCs and the secondary injury of the retina after optic nerve injury, promote cell anti-apoptosis effect of RGCs, thereby retard the damage of the retina and optic nerve after TON, and also promote the repair of optic nerve and retina through upregulating the expression of nerve growth factors.

Platelet-rich plasma;Optic nerve injury;Retinal ganglion cells;Brain-derived neurotrophic factor;Growth associated protein-43
Xing Yiqiao, Email: nc.defudabe.uhw75gnix_oaiqiy
引用本文

李琳玲,邢怡桥. 富血小板血浆在兔外伤性视神经损伤中的修复作用及其机制[J]. 中华实验眼科杂志,2021,39(03):198-206.

DOI:10.3760/cma.j.cn115989-20200701-00468

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
外伤性视神经病变(traumatic optic neuropathies,TON)是由于外伤直接或间接导致的视神经损伤,是颅脑损伤后视力永久性丧失的主要原因之一 [ 1 ]。寻求视神经损伤后视神经和视网膜修复再生的方法、探索改善视神经功能的治疗策略是眼科研究的热点 [ 2 ]。富血小板血浆(platelet-rich plasma,PRP)是全血经过离心分离而得到的血液制品,含有多种生长因子,如血小板衍生生长因子、表皮生长因子、胰岛素样生长因子-1、血管内皮生长因子等,在肌肉和骨骼等多种组织的损伤修复和再生过程中起重要作用 [ 3 ]。此外,PRP可作为组织工程应用的自体来源,作为骨髓干细胞颅内给药的支架,可显著改善诱导性脑出血实验动物的神经功能 [ 4 ]。随着PRP在临床的应用越来越广泛,也有研究发现PRP可改善接受体外人工受孕治疗患者的子宫内膜厚度,从而实现对子宫内膜生长不良导致不孕症的治疗 [ 5 ]。然而,PRP对视神经损伤修复作用的研究较少。目前常用的视神经损伤动物模型主要有视神经横断伤、视神经撞击伤、视神经牵拉伤、视神经挤压伤、视神经钳夹伤等动物模型。视神经横断伤动物模型可造成所有视网膜神经节细胞(retinal ganglion cells,RGCs)轴突完全切断 [ 6 ]。视神经撞击伤动物模型接近临床的间接视神经损伤,但是致伤设备复杂、操作繁琐、对实验动物创伤较大,死亡率高 [ 7 ]。视神经牵拉伤动物模型致伤装置复杂、手术步骤较多且操作难度较大 [ 8 ]。视神经挤压伤动物模型手术操作简单,但难以保证造成损伤程度均一 [ 9 ]。视神经钳夹伤模型是目前实验研究中应用最广泛的方法,具有设计简单、易于操作、创伤性小、造模成功率高,且能够保证视神经髓鞘的完整性等特点 [ 10 , 11 ]。本研究观察兔视神经钳夹伤模型中视网膜和视神经受损情况,并探索PRP对视神经损伤的修复作用及其机制。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Tao W , Dvoriantchikova G , Tse BC et al. A novel mouse model of traumatic optic neuropathy using external ultrasound energy to achieve focal,indirect optic nerve injury[J/OL]Sci Rep 20177(1):11779[2020-06-25]https://pubmed.ncbi.nlm.nih.gov/28924145/. DOI: 10.1038/s41598-017-12225-6 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Singman EL , Daphalapurkar N , White H et al. Indirect traumatic optic neuropathy[J/OL]Mil Med Res 20163:2[2020-04-10]https://pubmed.ncbi.nlm.nih.gov/26759722/. DOI: 10.1186/s40779-016-0069-2 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Bos-Mikich A , de Oliveira R , Frantz N Platelet-rich plasma therapy and reproductive medicine[J]J Assist Reprod Genet 201835(5):753-756. DOI: 10.1007/s10815-018-1159-8 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Sadeghi-Ataabadi M , Mostafavi-Pour Z , Vojdani Z et al. Fabrication and characterization of platelet-rich plasma scaffolds for tissue engineering applications[J]Mater Sci Eng C Mater Biol Appl 201771:372-380. DOI: 10.1016/j.msec.2016.10.001 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Chang Y , Li J , Wei LN et al. Autologous platelet-rich plasma infusion improves clinical pregnancy rate in frozen embryo transfer cycles for women with thin endometrium[J/OL]Medicine (Baltimore) 201998(3):e14062[2020-05-28]https://pubmed.ncbi.nlm.nih.gov/30653117/. DOI: 10.1097/MD.0000000000014062 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Yan F , Guo S , Chai Y et al. Partial optic nerve transection in rats:a model established with a new operative approach to assess secondary degeneration of retinal ganglion cells[J/OL]J Vis Exp 2017,(128):56272[2020-03-16]https://pubmed.ncbi.nlm.nih.gov/29155782/. DOI: 10.3791/56272 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Ibrahim AS , Elmasry K , Wan M et al. A controlled impact of optic nerve as a new model of traumatic optic neuropathy in mouse[J]Invest Ophthalmol Vis Sci 201859(13):5548-5557. DOI: 10.1167/iovs.18-24773 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Maxwell WL , Bartlett E , Morgan H Wallerian degeneration in the optic nerve stretch-injury model of traumatic brain injury:a stereological analysis[J]J Neurotrauma 201532(11):780-790. DOI: 10.1089/neu.2014.3369 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Kang LH , Zhang S , Jiang S et al. Activation of autophagy in the retina after optic nerve crush injury in rats[J]Int J Ophthalmol 201912(9):1395-1401. DOI: 10.18240/ijo.2019.09.04 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Lv XM , Liu Y , Wu F et al. Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve:viscoelasticity characterization[J]Neural Regen Res 201611(4):652-656. DOI: 10.4103/1673-5374.180753 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Chen M , Jiang Y , Zhang JS et al. Repairing effect of Schwann cells combined with mesenchymal stem cells on optic nerve injury in rats[J]Eur Rev Med Pharmacol Sci 201923(1):277-288. DOI: 10.26355/eurrev_201901_16774 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Benowitz LI , He Z , Goldberg JL . Reaching the brain:advances in optic nerve regeneration[J]Exp Neurol 2017287(Pt 3):365-373. DOI: 10.1016/j.expneurol.2015.12.015 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Fischer D , Leibinger M Promoting optic nerve regeneration[J]Prog Retin Eye Res 201231(6):688-701. DOI: 10.1016/j.preteyeres.2012.06.005 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Cattin AL , Lloyd AC . The multicellular complexity of peripheral nerve regeneration[J]Curr Opin Neurobiol 201639:38-46. DOI: 10.1016/j.conb.2016.04.005 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Takeda A , Shinozaki Y , Kashiwagi K et al. Microglia mediate non-cell-autonomous cell death of retinal ganglion cells[J]Glia 201866(11):2366-2384. DOI: 10.1002/glia.23475 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Yin Y , De Lima S , Gilbert HY et al. Optic nerve regeneration:a long view[J]Restor Neurol Neurosci 201937(6):525-544. DOI: 10.3233/RNN-190960 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Tsai RK , Chang CH , Wang HZ . Neuroprotective effects of recombinant human granulocyte colony-stimulating factor (G-CSF) in neurodegeneration after optic nerve crush in rats[J]Exp Eye Res 200887(3):242-250. DOI: 10.1016/j.exer.2008.06.004 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Chen H , Weber AJ . BDNF enhances retinal ganglion cell survival in cats with optic nerve damage[J]Invest Ophthalmol Vis Sci 200142(5):966-974.
返回引文位置Google Scholar
百度学术
万方数据
[19]
Pernet V , Di Polo A Synergistic action of brain-derived neurotrophic factor and lens injury promotes retinal ganglion cell survival,but leads to optic nerve dystrophy in vivo [J]Brain 2006129(Pt 4):1014-1026. DOI: 10.1093/brain/awl015 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Schäbitz WR , Sommer C , Zoder W et al. Intravenous brain-derived neurotrophic factor reduces infarct size and counterregulates Bax and Bcl-2 expression after temporary focal cerebral ischemia[J]Stroke 200031(9):2212-2217. DOI: 10.1161/01.str.31.9.2212 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Li HJ , Sun ZL , Yang XT et al. Exploring optic nerve axon regeneration[J]Curr Neuropharmacol 201715(6):861-873. DOI: 10.2174/1570159X14666161227150250 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Carulli D , Buffo A , Strata P Reparative mechanisms in the cerebellar cortex[J]Prog Neurobiol 200472(6):373-398. DOI: 10.1016/j.pneurobio.2004.03.007 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Grasselli G , Strata P Structural plasticity of climbing fibers and the growth-associated protein GAP-43[J/OL]Front Neural Circuits 20137:25[2020-05-06]https://pubmed.ncbi.nlm.nih.gov/23441024/. DOI: 10.3389/fncir.2013.00025 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Stewart AN , Matyas JJ , Welchko RM et al. SDF-1 overexpression by mesenchymal stem cells enhances GAP-43-positive axonal growth following spinal cord injury[J]Restor Neurol Neurosci 201735(4):395-411. DOI: 10.3233/RNN-160678 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Kimura A , Namekata K , Guo X et al. Neuroprotection,growth factors and BDNF-TrkB signalling in retinal degeneration[J/OL]Int J Mol Sci 201617(9):1584[2020-05-06]https://pubmed.ncbi.nlm.nih.gov/27657046/. DOI: 10.3390/ijms17091584 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Yin N , Wang Y , Ding L et al. Platelet-rich plasma enhances the repair capacity of muscle-derived mesenchymal stem cells to large humeral bone defect in rabbits[J/OL]Sci Rep 202010(1):6771[2020-05-10]https://pubmed.ncbi.nlm.nih.gov/32317711/. DOI: 10.1038/s41598-020-63496-5 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
邢怡桥,Email: nc.defudabe.uhw75gnix_oaiqiy
B
所有作者均声明不存在利益冲突
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号