综述
ENGLISH ABSTRACT
光相干断层扫描血管成像技术在青光眼损害评价中的作用
张阳
李元媛
原慧萍 [综述]
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20191210-00537
Optical coherence tomography angiography in the evaluation of glaucomatous damage
Zhang Yang
Li Yuanyuan
Yuan Huiping
Authors Info & Affiliations
Zhang Yang
The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
Li Yuanyuan
The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
Yuan Huiping
The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
·
DOI: 10.3760/cma.j.cn115989-20191210-00537
424
77
0
0
2
0
PDF下载
APP内阅读
摘要

青光眼是一种神经退行性疾病,其特征性改变为视盘的凹陷性萎缩和视野的特征性缺损。目前青光眼的诊断和评价主要应用眼底照相、光相干断层扫描和视野检查。血流动力学改变在青光眼视神经损害的病理生理学机制中占有重要作用。以往对视盘的血流评估都是针对大血管,而对于微血管的血流定量评估一直缺少很好的评估设备。光相干断层扫描血管成像技术(OCTA)可实现对视网膜及脉络膜血流的量化,为青光眼视神经损害的评价提供了新的手段和指标。本文对应用OCTA技术测量视盘和黄斑区的血管密度在青光眼诊断和进展评估中的研究及血流参数与视神经纤维层和筛板等结构参数和视野参数的一致性等方面的研究进展进行综述,评价血流参数在青光眼损害评估中的作用。

光相干断层扫描血管成像技术;青光眼;评估指标
ABSTRACT

Glaucoma is a neurodegenerative disease, which is characterized by a concave atrophy of the optic disc and a characteristic defect of the visual field.The current diagnosis and evaluation of glaucoma are mainly based on fundus photography, optical coherence tomography and visual field examination.Hemodynamic changes play an important role in the pathophysiology of glaucomatous optic nerve damage, however, blood flow evaluation of the optic disc has been directed to large vessels in the past, and there has been no good evaluation equipment for quantitative evaluation of blood flow in microvessels.Optical coherence tomography angiography quantifies blood flow in the retina and choroid, which provides a new method and index for the evaluation of glaucomatous optic nerve damage.In this paper, the application of optical coherence tomography angiography in the measurement of blood vessel density in the optic disc and macular region in the diagnosis and progress assessment of glaucoma, and the consistency of blood flow parameters with structural parameters such as the optic nerve fiber layer and sieve plate and visual field parameters, etc.were reviewed to evaluate the value of blood flow parameters in predicting and assessing glaucomatous damage.

Optical coherence tomography angiography;Glaucoma;Evaluation indexes
Yuan Huiping, Email: mocdef.6ab213102phnauy
引用本文

张阳,李元媛,原慧萍. 光相干断层扫描血管成像技术在青光眼损害评价中的作用[J]. 中华实验眼科杂志,2021,39(04):365-368.

DOI:10.3760/cma.j.cn115989-20191210-00537

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
青光眼是一种以视神经凹陷性萎缩和视野缺损为共同特征的疾病,病理性眼压增高是其主要危险因素。青光眼性视神经损伤在早期阶段难以发现,传统血管检测方式主要有2种,彩色多普勒超声成像无法检测血液流动,荧光素血管造影术为有创方式、有致敏危险且对深层毛细血管检测率极低。其他青光眼检查设备,如眼底照相、光相干断层扫描(optical coherence tomography,OCT)等难以评估视网膜和视神经的微血管异常。光相干断层扫描血管成像技术(optical coherence tomography angiography,OCTA)是一种无创的三维视网膜和脉络膜血流成像技术,通过算法生成视网膜结构和视网膜脉络膜毛细血管高分辨率图像,可对视网膜和脉络膜血管密度和血流进行量化,并能分层观察视网膜脉络膜血流改变,算法的改进提高了深度分辨率 [ 1 , 2 ]。OCTA在青光眼视神经损害评估中的应用主要集中在视盘结构、视盘周围血管密度(circumpapillary vessel density,cpVD)、黄斑全层厚度、黄斑区视网膜神经节细胞复合体(macular ganglion cell complex,mGCC)厚度等方面,还可以与眼底照相、视野以及OCT测量的视网膜神经纤维层(retinal nerve fiber layer,RNFL)厚度对比分析,为青光眼诊断提供临床依据。本文对应用OCTA技术测量视盘和黄斑区的血管密度在青光眼诊断和进展评估中的研究及血流参数与视神经纤维层和筛板等结构参数和视野参数一致性等研究进展进行综述,评价血流参数在青光眼损害评估中的作用。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Campbell JP , Zhang M , Hwang TS et al.Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography[J/OL ]. Sci Rep 20177:42201[2020-08-01]. http://www.ncbi.nlm.nih.gov/pubmed/28186181. DOI: 10.1038/srep42201 .
[2]
Takusagawa HL , Liu L , Ma KN et al.Projection-resolved optical coherence tomography angiography of macular retinal circulation in glaucoma[J ]. Ophthalmology 2017124(11):1589-1599. DOI: 10.1016/j.ophtha.2017.06.002 .
[3]
Uchida H , Ugurlu S , Caprioli J .Increasing peripapillary atrophy is associated with progressive glaucoma[J]. Ophthalmology 1998105(8):1541-1545. DOI: 10.1016/S0161-6420(98)98044-7 .
[4]
Suh MH , Zangwill LM , Manalastas PI et al.Deep retinal layer microvasculature dropout detected by the optical coherence tomography angiography in glaucoma[J ]. Ophthalmology 2016123(12):2509-2518. DOI: 10.1016/j.ophtha.2016.09.002 .
[5]
Kim JA , Kim TW , Lee EJ et al.Microvascular changes in peripapillary and optic nerve head tissues after trabeculectomy in primary open-angle glaucoma[J ]. Invest Ophthalmol Vis Sci 201859(11):4614-4621. DOI: 10.1167/iovs.18-25038 .
[6]
Lee EJ , Kim TW , Weinreb RN .Reversal of lamina cribrosa displacement and thickness after trabeculectomy in glaucoma[J ]. Ophthalmology 2012119(7):1359-1366. DOI: 10.1016/j.ophtha.2012.01.034 .
[7]
Lee SH , Yu DA , Kim TW et al.Reduction of the lamina cribrosa curvature after trabeculectomy in glaucoma[J ]. Invest Ophthalmol Vis Sci 201657(11):5006-5014. DOI: 10.1167/iovs.15-18982 .
[8]
Lee EJ , Kim TW .Lamina cribrosa reversal after trabeculectomy and the rate of progressive retinal nerve fiber layer thinning[J ]. Ophthalmology 2015122(11):2234-2242. DOI: 10.1016/j.ophtha.2015.07.020 .
[9]
Rao HL , Pradhan ZS , Weinreb RN et al.Regional comparisons of optica l coherence tomography angiography vessel density in primary open-angle glaucoma[J]. Am J Ophthalmol 2016171:75-83. DOI: 10.1016/j.ajo.2016.08.030 .
[10]
Lee EJ , Lee KM , Lee SH et al.OCT angiography of the peripapillary retina in primary open-angle glaucoma[J ]. Invest Ophthalmol Vis Sci 201657(14):6265-6270. DOI: 10.1167/iovs.16-20287 .
[11]
Rao HL , Pradhan ZS , Weinreb RN et al.A comparison of the diagnostic ability of vessel density and structural measurements of optical coherence tomography in primary open angle glaucoma[J/OL ]. PLoS One 201712(3):e0173930[2020-07-10]. http://www.ncbi.nlm.nih.gov/pubmed/28288185. DOI: 10.1371/journal.pone.0173930 .
[12]
Lee EJ , Lee SH , Kim JA et al.Parapapillary deep-layer microvasculature dropout in glaucoma:topographic association with glaucomatous damage[J ]. Invest Ophthalmol Vis Sci 201758(7):3004-3010. DOI: 10.1167/iovs.17-21918 .
[13]
Lee EJ , Lee KM , Lee SH et al.Parapapillary choroidal microvasculature dropout in glaucoma:a comparison between optical coherence tomography angiography and indocyanine green angiography[J ]. Ophthalmology 2017124(8):1209-1217. DOI: 10.1016/j.ophtha.2017.03.039 .
[14]
Kim JA , Lee EJ , Kim TW .Evaluation of parapapillary choroidal microvasculature dropout and progressive retinal nerve fiber layer thinning in patients with glaucoma[J ]. JAMA Ophthalmol 2019137(7):810-816. DOI: 10.1001/jamaophthalmol.2019.1212 .
[15]
Yarmohammadi A , Zangwill LM , Diniz-Filho A et al.Relationship between optical coherence tomography angiography vessel density and severity of visual field loss in glaucoma[J ]. Ophthalmology 2016123(12):2498-2508. DOI: 10.1016/j.ophtha.2016.08.041 .
[16]
Sommer A , Katz J , Quigley HA et al.Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss[J ]. Arch Ophthalmol 1991109(1):77-83. DOI: 10.1001/archopht.1991.01080010079037 .
[17]
Quigley HA , Katz J , Derick RJ et al.An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage[J ]. Ophthalmology 199299(1):19-28. DOI: 10.1016/s0161-6420(92)32018-4 .
[18]
Yarmohammadi A , Zangwill LM , Manalastas P et al.Peripapillary and macular vessel density in patients with primary open-angle glaucoma and unilateral visual field loss[J ]. Ophthalmology 2018125(4):578-587. DOI: 10.1016/j.ophtha.2017.10.029 .
[19]
Kim JS , Kim YK , Baek SU et al.Topographic correlation between macular superficial microvessel density and ganglion cell-inner plexiform layer thickness in glaucoma-suspect and early normal-tension glaucoma[J ]. Br J Ophthalmol 2020104(1):104-109. DOI: 10.1136/bjophthalmol-2018-313732 .
[20]
Rao HL , Pradhan ZS , Weinreb RN et al.Vessel density and structural measure ments of optical coherence tomography in primary angle closure and primary angle closure glaucoma[J]. Am J Ophthalmol 2017177:106-115. DOI: 10.1016/j.ajo.2017.02.020 .
[21]
Rao HL , Kadambi SV , Weinreb RN et al.Diagnostic ability of peripapillary vessel density measurements of optical coherence tomography angiography in primary open-angle and angle-closure glaucoma[J ]. Br J Ophthalmol 2017101(8):1066-1070. DOI: 10.1136/bjophthalmol-2016-309377 .
[22]
Zhang S , Wu C , Liu L et al.Optical coherence tomography angiography of the peripapillary retina in primary angle-closure glaucoma[J ]. Am J Ophthalmol 2017182:194-200. DOI: 10.1016/j.ajo.2017.07.024 .
[23]
Aung T , Friedman DS , Chew PT et al.Long-term outcomes in asians after acute primary angle closure[J ]. Ophthalmology 2004111(8):1464-1469. DOI: 10.1016/j.ophtha.2003.12.061 .
[24]
Tsai JC .Acute primary angle closure structural damage[J ]. Ophthalmology 2011118(5):1007. DOI: 10.1016/j.ophtha.2011.01.030 .
[25]
Nongpiur ME , Ku JY , Aung T .Angle closure glaucoma:a mechanistic review[J]. Curr Opin Ophthalmol 201122(2):96-101. DOI: 10.1097/ICU.0b013e32834372b9 .
[26]
Yarmohammadi A , Zangwill LM , Diniz-Filho A et al.Optical coherence tomography angiography vessel density in healthy,glaucoma suspect,and glaucoma eyes[J ]. Invest Ophthalmol Vis Sci 201657(9):OCT451-459. DOI: 10.1167/iovs.15-18944 .
[27]
Kumar RS , Anegondi N , Chandapura RS et al.Discriminant function of optical coherence tomography angiography to determine disease severity in glaucoma[J ]. Invest Ophthalmol Vis Sci 201657(14):6079-6088. DOI: 10.1167/iovs.16-19984 .
[28]
Quigley HA .Glaucoma[J ]. Lancet 2011377(9774):1367-1377. DOI: 10.1016/S0140-6736(10)61423-7 .
备注信息
A
原慧萍,Email: mocdef.6ab213102phnauy
B
所有作者均声明不存在利益冲突
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号