专家述评
ENGLISH ABSTRACT
掌握各种眼底影像学检查特点,合理选择眼底影像学检查方法
文峰
华瑞
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20210302-00140
Multiple fundus imaging diagnosis: knowing the principles well for a rational application
Wen Feng
Hua Rui
Authors Info & Affiliations
Wen Feng
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
Hua Rui
Department of Ophthalmology, The First Hospital of China Medical University, Shenyang 110001, China
·
DOI: 10.3760/cma.j.cn115989-20210302-00140
953
91
0
0
4
0
PDF下载
APP内阅读
摘要

眼底影像诊断技术以光和影作为基础,在眼科领域发挥着重要作用,尤其是近年来多模影像技术不断进步和发展,在眼科临床的应用日益广泛。按照工作特征和原理的不同,眼底影像诊断技术可大致分为解剖性影像和功能性影像2个部分,此外,随着光和影技术在医学领域的应用范围更加广泛,眼科影像技术将逐渐朝着广域化、精细化、多模化、定量化和智能化的目标发展。因此,我们深知眼底的光和影远非仅如我们目前所见,尚有许多未解之谜仍待探索。新兴影像技术的临床化和产业化仍有很长的路要走,人工智能深度学习在眼科的应用亦存在潜在的挑战。多模影像技术有助于眼科疾病的精准诊断和动态监测,为眼科疾病治疗的选择提供了较好的参考依据。然而,面对诸多检查手段,眼科医生如何选择敏感性、特异性高的检查方法,避免医疗资源的浪费,尽可能降低患者的医疗负担成为眼科医生需要认真思考的问题。

眼底;多模影像;诊断
ABSTRACT

Multimodal fundus imaging techniques, based on lights and shadows, appear to have a rapidly great progress in recent years.Fundus imaging techniques are divided into anatomical approaches and functional approaches according to the working characteristics and principle of different instruments.Nowadays, fundus imaging techniques are developing toward a wide field, microview, multimodal, quantitative, and intelligent way.However, to our knowledge, the fundus is very broad with many unexplored territories and unsolved mysteries until now.The road of clinical industrialization of emerging imaging techniques is still long, and there is also a potential challenge in the application of artificial intelligence deep learning in ophthalmology.Multimodal fundus imaging techniques are beneficial for us to accurately diagnose and dynamically monitor eye diseases, but with so many examination methods, how to choose a highly sensitive and specific way to avoid the waste of medical resources and reduce unnecessary financial burden of patients is the responsibility of ophthalmologists.

Fundus oculi;Multimodal imaging;Diagnosis
Wen Feng, Email: mocdef.labiamxof802gnefnew
引用本文

文峰,华瑞. 掌握各种眼底影像学检查特点,合理选择眼底影像学检查方法[J]. 中华实验眼科杂志,2021,39(05):376-381.

DOI:10.3760/cma.j.cn115989-20210302-00140

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
近年来,眼底影像诊断技术在荧光素眼底血管造影(fundus fluorescein angiography,FFA)的基础之上,取得了飞速发展;多模式的"光与影"检查,使我们在空间与时间,功能与形态,物质基础与临床影像等多角度、全方位地对眼底疾病有更深刻的认识。
眼底影像检查是医学影像检查的一个分支。眼球是一个具有光学通路的感光器官,这一特征确保了眼底影像检查能够通过记录并分析眼底组织反射或受激发射的光,对眼底组织结构、功能及病理过程进行研究和诊断。扫描光源、激发与滤光系统以及眼底组织的光学特性均对眼底影像起到决定性作用。光是眼底成像的基本物理条件,不同波长的光源和扫描技术可通过不同原理对不同层次的眼组织进行呈现,组织层次可从玻璃体到脉络膜上腔,扫描方式包括断层、Enface再到三维立体重建,并可进行血管血流影像特征的提取,构成眼底解剖影像。眼底成像不仅需要光学成像诊断技术,还需要影像诊断系统,例如眼底血管造影显示的视网膜下积液、出血导致荧光遮蔽可提示特定眼底病变等。此外,这种解剖影像的成像并不限于眼后节结构,在眼前节结构的显示中亦有较大的优势,例如眼前节照相、眼前节光相干断层扫描(optical coherence tomography,OCT)和虹膜血管造影等。此外,采用不同波长的激发光联合滤光片亦能获取眼底组织相关物质的代谢信息,即眼底功能影像,常用于遗传代谢性疾病的诊断,对其他累及眼底细胞内物质代谢疾病的进展及转归的动态监测也有较大的应用价值,如年龄相关性黄斑变性(age-related macular degeneration,AMD)和中心性浆液性脉络膜视网膜病变(central serous chorioretinopathy,CSC)等。AMD和息肉状脉络膜血管病变(polypoidal choroidal vasculopathy,PCV)是常见的以黄斑区出血和渗出为主要病理特征的眼病,严重威胁患者的视力 [ 1 ]。眼底解剖影像与功能影像技术相结合即可从结构和功能的角度分析眼底病变的性质和特征,有利于疾病的明确诊断,这就是多模影像的临床意义。眼底多模影像技术并非仅仅局限于上述解剖和功能影像学检查手段,还应包括视野、多焦视觉电生理检查等。本文拟从广角照相及造影、OCT和多波长自发荧光等技术评述光和影在眼底影像检查中的应用价值。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
文峰吴崐芳 新生血管性年龄 相关性黄斑变性和息肉状脉络膜血管病变的分子生物学研究现状及存在问题 [J]中华实验眼科杂志 201129(4):289-292DOI: 10.3760/cma.j.issn.2095-0160.2011.04.001
返回引文位置Google Scholar
百度学术
万方数据
Wen F , Wu KF . Current researches and existing problems of molecular biology in neovascular age-related macular degeneration and polypoidal choroidal vasculopathy[J]. Chin J Exp Ophthalmol, 2011,29(4):289-292. DOI: 10.3760/cma.j.issn.2095-0160.2011.04.001 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[2]
Spaide RF , Klancnik JM Jr, Cooney MJ . Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography[J]. JAMA Ophthalmol, 2015,133(1):45-50. DOI: 10.1001/jamaophthalmol.2014.3616 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Freund KB , Gattoussi S , Leong B . Dense B-scan optical coherence tomography angiography[J]. Am J Ophthalmol, 2018,190:78-88. DOI: 10.1016/j.ajo.2018.03.029 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Cabral D , Pereira T , Ledesma-Gil G ,et al. Volume rendering of dense B-scan optical coherence tomography angiography to evaluate the connectivity of macular blood flow[J/OL]. Invest Ophthalmol Vis Sci, 2020,61(6):44[2021-02-10]. http://www.ncbi.nlm.nih.gov/pubmed/32561927. DOI: 10.1167/iovs.61.6.44 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Bacci T , Essilfie JO , Leong B ,et al. Exudative non-neovascular age-related macular degeneration[J/OL]. Graefe's Arch Clin Exp Ophthalmol, 2020[2021-02-10]. http://www.ncbi.nlm.nih.gov/pubmed/33242167. DOI: 10.1007/s00417-020-05021-y .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Lavinsky F , Lavinsky D . Novel perspectives on swept-source optical coherence tomography[J/OL]. Int J Retina Vitreous, 2016,2:25[2021-02-10]. http://www.ncbi.nlm.nih.gov/pubmed/27847643. DOI: 10.1186/s40942-016-0050-y .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Gal-Or O , Ghadiali Q , Dolz-Marco R ,et al. In vivo imaging of the fibrillar architecture of the posterior vitreous and its relationship to the premacular bursa, Cloquet's canal, prevascular vitreous fissures, and cisterns [J]. Graefe's Arch Clin Exp Ophthalmol, 2019,257(4):709-714. DOI: 10.1007/s00417-018-04221-x .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Michalewska Z , Michalewski J , Nawrocka Z ,et al. Suprachoroidal layer and suprachoroidal space delineating the outer margin of the choroid in swept-source optical coherence tomography[J]. Retina, 2015,35(2):244-249. DOI: 10.1097/IAE.0000000000000281 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Takusagawa HL , Hoguet A , Junk AK ,et al. Swept-source OCT for evaluating the lamina cribrosa: a report by the American Academy of Ophthalmology[J]. Ophthalmology, 2019,126(9):1315-1323. DOI: 10.1016/j.ophtha.2019.03.044 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Vira J , Marchese A , Singh RB ,et al. Swept-source optical coherence tomography imaging of the retinochoroid and beyond[J]. Expert Rev Med Devices, 2020,17(5):413-426. DOI: 10.1080/17434440.2020.1755256 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Hua R , Wang H . Dark signals in the choroidal vasculature on optical coherence tomography angiography: an artefact or not?[J/OL]. J Ophthalmol, 2017[2021-02-26]. https://www.hindawi.com/journals/joph/2017/5498125/. DOI: 10.1155/2017/5498125 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
文峰吲哚青绿血管造影术及其临床应用[J]中华实验眼科杂志 200624(2):113-118DOI: 10.3760/cma.j.issn.2095-0160.2006.02.001
返回引文位置Google Scholar
百度学术
万方数据
Wen F . Clinical application of indocyanine green angiography[J]. Chin J Exp Ophthalmol, 2006,24(2):113-118. DOI: 10.3760/cma.j.issn.2095-0160.2006.02.001 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[13]
Sheehy CK , Tiruveedhula P , Sabesan R ,et al. Active eye-tracking for an adaptive optics scanning laser ophthalmoscope[J]. Biomed Opt Express, 2015,6(7):2412-2423. DOI: 10.1364/BOE.6.002412 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Kaizu Y , Nakao S , Wada I ,et al. Imaging of retinal vascular layers: adaptive optics scanning laser ophthalmoscopy versus optical coherence tomography angiography[J/OL]. Transl Vis Sci Technol, 2017,6(5):2[2020-02-26]. http://www.ncbi.nlm.nih.gov/pubmed/28875064. DOI: 10.1167/tvst.6.5.2 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Mujat M , Ferguson RD , Iftimia N ,et al. Compact adaptive optics line scanning ophthalmoscope[J]. Opt Express, 2009,17(12):10242-10258. DOI: 10.1364/oe.17.010242 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Chui TY , Gast TJ , Burns SA . Imaging of vascular wall fine structure in the human retina using adaptive optics scanning laser ophthalmoscopy[J]. Invest Ophthalmol Vis Sci, 2013,54(10):7115-7124. DOI: 10.1167/iovs.13-13027 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Hirano T , Imai A , Kasamatsu H ,et al. Assessment of diabetic retinopathy using two ultra-wide-field fundus imaging systems, the Clarus ® and Optos™ systems [J/OL]. BMC Ophthalmol, 2018,18(1):332[2020-02-28]. http://www.ncbi.nlm.nih.gov/pubmed/30572870. DOI: 10.1186/s12886-018-1011-z .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Eastline M , Munk MR , Wolf S ,et al. Repeatability of wide-field optical coherence tomography angiography in normal retina[J/OL]. Transl Vis Sci Technol, 2019,8(3):6[2020-03-01]. http://www.ncbi.nlm.nih.gov/pubmed/31106033. DOI: 10.1167/tvst.8.3.6 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Pichi F , Smith SD , Abboud EB ,et al. Wide-field optical coherence tomography angiography for the detection of proliferative diabetic retinopathy [J]. Graefe's Arch Clin Exp Ophthalmol, 2020,258(9):1901-1909. DOI: 10.1007/s00417-020-04773-x .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Duncker T , Greenberg JP , Sparrow JR ,et al. Visualization of the optic fissure in short-wavelength autofluorescence images of the fundus[J]. Invest Ophthalmol Vis Sci, 2012,53(10):6682-6686. DOI: 10.1167/iovs.12-10004 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Hua R , Gangwani R , Liu L ,et al. Use digital subtraction images of blue-light and near-infrared autofluorescence for the assessment of irregular foveal contour[J]. Lasers Med Sci, 2015,30(1):445-451. DOI: 10.1007/s10103-014-1693-2 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
华瑞胡悦东柳力敏两种波长自发荧光联合频域光学相干断层扫描对视网膜色素变性微结构与功能的再认识[J]中华眼视光学与视觉科学杂志 201113(3):178-182DOI: 10.3760/cma.j.issn.1674-845X.2011.03.005
返回引文位置Google Scholar
百度学术
万方数据
Hua R , Hu YD , Liu LM ,et al. Two-wavelength fundus autofluorescence combined with spectral-domain optical coherence tomography for recognition of retinitis pigmentosa in microstructure and function[J]. Chin J Optom Ophthalmol Vis Sci, 2011,13(3):178-182. DOI: 10.3760/cma.j.issn.1674-845X.2011.03.005 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[23]
Pichi F , Abboud EB , Ghazi NG ,et al. Fundus autofluorescence imaging in hereditary retinal diseases[J/OL]. Acta Ophthalmol, 2018,96(5):e549-e561[2021-03-03]. http://www.ncbi.nlm.nih.gov/pubmed/29098804. DOI: 10.1111/aos.13602 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Hua R , Liu L , Chen L . Evaluation of the progression rate of atrophy lesions in punctate inner choroidopathy (PIC) based on autofluorescence analysis[J]. Photodiagnosis Photodyn Ther, 2014,11(4):565-569. DOI: 10.1016/j.pdpdt.2014.07.002 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Ly A , Nivison-Smith L , Assaad N ,et al. Fundus autofluorescence in age-related macular degeneration[J]. Optom Vis Sci, 2017,94(2):246-259. DOI: 10.1097/OPX.0000000000000997 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
文峰吉宇莹重视中心性浆液性脉络膜视网膜病变的鉴别诊断[J]中华实验眼科杂志 201432(12):1057-1060DOI: 10.3760/cma.j.issn.2095-0160.2014.12.001
返回引文位置Google Scholar
百度学术
万方数据
Wen F , Ji YY . Paying attention to the differential diagnosis of central serous chorioretinopathy[J]. Chin J Exp Ophthalmol, 2014,32(12):1057-1060. DOI: 10.3760/cma.j.issn.2095-0160.2014.12.001 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[27]
Mori K , Gehlbach PL , Nishiyama Y ,et al. The ultra-late phase of indocyanine green angiography for healthy subjects and patients with age-related macular degeneration[J]. Retina, 2002,22(3):309-316. DOI: 10.1097/00006982-200206000-00009 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Hua R , Yao K , Xia F ,et al. The hyper-fluorescent transitional bands in ultra-late phase of indocyanine green angiography in chronic central serous chorioretinopathy[J]. Lasers Surg Med, 2016,48(3):260-263. DOI: 10.1002/lsm.22434 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Kabbara SW , Zangwill LM , Mundae R ,et al. Comparing optical coherence tomography radial and cube scan patterns for measuring Bruch's membrane opening minimum rim width (BMO-MRW) in glaucoma and healthy eyes: cross-sectional and longitudinal analysis[J]. Br J Ophthalmol, 2018,102(3):344-351. DOI: 10.1136/bjophthalmol-2016-310111 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Singh SR , Vupparaboina KK , Goud A ,et al. Choroidal imaging biomarkers[J]. Surv Ophthalmol, 2019,64(3):312-333. DOI: 10.1016/j.survophthal.2018.11.002 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Kim AY , Chu Z , Shahidzadeh A ,et al. Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2016,57(9):OCT362-370. DOI: 10.1167/iovs.15-18904 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Ting D , Pasquale LR , Peng L ,et al. Artificial intelligence and deep learning in ophthalmology[J]. Br J Ophthalmol, 2019,103(2):167-175. DOI: 10.1136/bjophthalmol-2018-313173 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Hua R , Ning H . Modified enhanced vitreous imaging modality of spectral domain optic coherence tomography[J]. Eye (Lond), 2021,35(1):351-352. DOI: 10.1038/s41433-020-0814-3 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Montés-Micó R , Tañá-Rivero P , Aguilar-Córcoles S ,et al. Assessment of anterior segment measurements using a high-resolution imaging device[J]. Expert Rev Med Devices, 2020,17(9):969-979. DOI: 10.1080/17434440.2020.1816463 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Hua R , Yao K , Chen L ,et al. Application of blue light (red-free) angiography using confocal scanning laser ophthalmos cope [J]. Retina, 2015,35(10):2158-2160. DOI: 10.1097/IAE.0000000000000573 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Peng Q , Chen Y , Hua R . The modification of fluorescein angiography and its applications in age-related macular degeneration and polypoidal choroidal vasculopathy[J]. Ophthalmic Res, 2019,61(1):60-64. DOI: 10.1159/000488906 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Sun Y , Hua R . Ocular surface squamous neoplasia: angiographic characteristics and response to subconjunctival/perilesional 5-fluorouracil injections[J]. Drug Des Devel Ther, 2019,13:1323-1334. DOI: 10.2147/DDDT.S191161 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Sun Y , Hua R . Long-term efficacy and safety of subconjunctival/perilesional 5-fluorouracil injections for ocular surface squamous neoplasia[J]. Drug Des Devel Ther, 2020,14:5659-5665. DOI: 10.2147/DDDT.S285752 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
Huang AS , Francis BA , Weinreb RN . Structural and functional imaging of aqueous humour outflow: a review[J]. Clin Exp Ophthalmol, 2018,46(2):158-168. DOI: 10.1111/ceo.13064 .
返回引文位置Google Scholar
百度学术
万方数据
[40]
Zeng R , Zhang X , Su Y ,et al. The noninvasive retro-mode imaging modality of confocal scanning laser ophthalmoscopy in polypoidal choroidal vasculopathy: a preliminary application[J/OL]. PLoS One, 2013,8(9):e75711[2021-03-16]. http://www.ncbi.nlm.nih.gov/pubmed/24058698. DOI: 10.1371/journal.pone.0075711 .
返回引文位置Google Scholar
百度学术
万方数据
[41]
Guo L , Tao J , Xia F ,et al. In vivo optical imaging of amblyopia: digital subtraction autofluorescence and split-spectrum amplitude-decorrelation angiography [J]. Lasers Surg Med, 2016,48(7):660-667. DOI: 10.1002/lsm.22520 .
返回引文位置Google Scholar
百度学术
万方数据
[42]
Zhang X , Zuo C , Li M ,et al. Spectral-domain optical coherence tomographic findings at each stage of punctate inner choroidopathy[J]. Ophthalmology, 2013,120(12):2678-2683. DOI: 10.1016/j.ophtha.2013.05.012 .
返回引文位置Google Scholar
百度学术
万方数据
[43]
Chen L , Zhang X , Wen F . Venous beading in two or more quadrants might not be a sensitive grading criterion for severe nonproliferative diabetic retinopathy[J]. Graefe's Arch Clin Exp Ophthalmol, 2018,256(6):1059-1065. DOI: 10.1007/s00417-018-3971-3 .
返回引文位置Google Scholar
百度学术
万方数据
[44]
Hua R , Liu L , Hu Y ,et al. The occ urrence and progression of outer retinal tubulation in Chinese patients after intravitreal injections of ranibizumab [J/OL]. Sci Rep, 2015,5:7661[2021-03-18]. http://www.ncbi.nlm.nih.gov/pubmed/25564457. DOI: 10.1038/srep07661 .
返回引文位置Google Scholar
百度学术
万方数据
[45]
Hua R , Liu L , Wang X ,et al. Imaging evidence of diabetic choroidopathy in vivo : angiographic pathoanatomy and choroidal-enhanced depth imaging [J/OL]. PLoS One, 2013,8(12):e83494[2021-03-18]. http://www.ncbi.nlm.nih.gov/pubmed/24349522. DOI: 10.1371/journal.pone.0083494 .
返回引文位置Google Scholar
百度学术
万方数据
[46]
Hua R , Li Q , Wong IY ,et al. Choroidal microvascular proliferation secondary to diabetes mellitus[J]. Oncotarget, 2017,8(2):2034-2036. DOI: 10.18632/oncotarget.14020 .
返回引文位置Google Scholar
百度学术
万方数据
[47]
Hua R , Qu L , Ma B ,et al. Diabetic optic neuropathy and its risk factors in Chinese patients with diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2019,60(10):3514-3519. DOI: 10.1167/iovs.19-26825 .
返回引文位置Google Scholar
百度学术
万方数据
[48]
Xia Y , Feng N , Hua R . "Choroidal caverns" spectrum lesions[J/OL]. Eye (Lond), 2020[2021-03-20]. http://www.ncbi.nlm.nih.gov/pubmed/32636 496 . DOI: 10.1038/s41433-020-1074-y .
返回引文位置Google Scholar
百度学术
万方数据
[49]
Siedlecki J , Schworm B , Priglinger SG . The pachychoroid disease spectrum-and the need for a uniform classification system[J]. Ophthalmol Retina, 2019,3(12):1013-1015. DOI: 10.1016/j.oret.2019.08.002 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
文峰,Email: mocdef.labiamxof802gnefnew
B
所有作者均声明不存在任何利益冲突
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号