实验研究
ENGLISH ABSTRACT
CRISPR/Cas9技术介导Crx-iCreERT2红色荧光报告人胚胎干细胞系的构建及其三维视网膜类器官培养
杜雨馨
刘依宗
阎飞跃
沈吟
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20210208-00103
Construction of Crx-iCreERT2 fluorescent reporter human embryonic stem cells by CRISPR/Cas9 technology and 3D retinal organoid culture
Du Yuxin
Liu Yizong
Yan Feiyue
Shen Yin
Authors Info & Affiliations
Du Yuxin
Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
Liu Yizong
Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
Yan Feiyue
Medical Research Institute, Wuhan University, Wuhan 430060, China
Shen Yin
Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
·
DOI: 10.3760/cma.j.cn115989-20210208-00103
857
56
0
0
0
0
PDF下载
APP内阅读
摘要

目的利用CRISPR/Cas9技术构建Crx-iCreERT2红色荧光报告人胚胎干细胞(ESCs)系及其3D视网膜类器官培养。

方法对H9细胞系靶位点序列进行PCR扩增并测序验证后,利用CRISPR/Cas9技术设计多条sgRNA并对其进行活性检测,根据活性、特异性等因素选择最合适的sgRNA。经酶切鉴定和测序确认打靶载体构建完成后,将打靶载体电转H9细胞系,在 hES-ZLM-001基因Exon4和3’-非翻译区之间终止密码子前插入P2A-tdTomato-P2A-iCreERT2,进行药物筛选、阳性克隆富集。设计引物对目标区域进行PCR扩增并测序,根据测序结果和测序峰图选出纯合去抗性敲进阳性细胞克隆。培养所得1-A07细胞系,通过流式细胞分析法检测OCT4阳性细胞比例,采用细胞爬片免疫荧光染色法观察干细胞标志物SOX2、NANOG和SSEA4表达情况。采用核型分析方法检测细胞核型。应用3D培养技术获得视网膜类器官,于分化后不同时间点行冰冻切片,免疫荧光染色法检测不同种类细胞分子标志物的表达分布情况。

结果H9细胞系靶位点序列与Genebank和Ensembl所提供序列一致。根据H9细胞系靶位点序列共设计16条sgRNA,最终选择sgRNA8和sgRNA12作为sgRNA。电转后通过PCR筛选得到4个去抗性敲进阳性克隆,其中1-A07细胞系经流式细胞仪分析OCT4阳性细胞比例约为98.7%,所得细胞系外源性tdTomato-P2A-iCreERT2片段重组位置正确,正常表达干细胞标志物,核型分析结果正常。应用3D培养技术可定向诱导1-A07细胞系分化为表达tdTomato红色荧光的视网膜类器官。分化后30 d,出现BRN3A阳性神经节细胞、CALBINDIN阳性水平细胞、CHAT阳性无长突细胞,分化后45 d,出现RECOVERIN阳性光感受器细胞,分化后90 d出现PKCα阳性双极细胞。神经节细胞分布于视网膜类器官深层,水平细胞、无长突细胞、双极细胞分布于中深层,光感受器细胞主要分布于顶层。

结论成功构建Crx-iCreERT2红色荧光报告人ESCs系,该细胞系可经3D培养诱导分化为表达tdTomato红色荧光的视网膜类器官。得到的视网膜类器官同人类正常视网膜的神经细胞组成一致,且发育的时间和空间顺序接近于正常的人类视网膜。该细胞系是一种强大的工具,可帮助实现人类视网膜发育和疾病产生的相关研究,并促进致盲疾病治疗方法的开发。

视网膜类器官;3D培养;胚胎干细胞;光感受器前体细胞
ABSTRACT

ObjectiveTo establish Crx-iCreERT2 fluorescent reporter human embryonic stem cell lines using CRISPR/Cas9 technology and 3D retinal organoid culture.

MethodsThe target site sequence of H9 cell line was verified by polymerase chain reaction (PCR). SgRNAs were designed by CRISPR/Cas9 technique and their activity was detected.The most optimal sgRNA was selected according to the factors such as activity and specificity.After identification of the target vectors by restriction enzyme and sequencing, the target vectors were transferred to the H9 cell line by electroporation.P2A-tdTomato-P2A-iCreERT2 was inserted between Exon4 and 3’-untranslated region of hES-ZLM-001 gene.Knockin positive clones were obtained after drug treatment, enrichment of positive clones.Primers were designed to perform PCR on the target region, and homozygous de-resistant knockin positive cell clones were selected according to the sequencing results and peaks.The 1-A07 cell line was cultured, and then flow cytometry for the proportion of OCT4 positive cells, immunofluorescence for three stem cell molecular markers including SOX2, NANOG, SSEA4, karyotype analysis were carried out to confirm whether the 1-A07 cell line could be used for further experiments.Retinal organoids were obtained by three-dimensional (3D) culture technology and the expression of molecular markers was detected by immunofluorescence at different developmental stages of retinal organoids.

ResultsThe target site sequence of H9 cell line was consistent with that given by Genebank and Ensembl.Sixteen sgRNAs were designed according to the target site sequence of H9 cell line, and finally sgRNA8 and sgRNA12 were selected.The sgRNAs and recombinant plasmids were transfected into the H9 cell line by electroporation, and four homozygous de-resistant knockin positive cell clones were obtained by PCR.Crx-iCreERT2 fluorescent reporter human embryonic stem cell lines were successfully obtained.In 1-A07 cell line, the proportion of OCT4 positive cells was about 98.7% by flow cytometry, and the expression of three stem cell markers was positive by immunofluorescence, and the karyotype was normal 46, XX.The results showed that the 1-A07 cell line could be used for further experiments.The Crx-iCreERT2 fluorescent reporter human embryonic stem cell lines were differentiated into tdTomato positive retinal organoids by 3D culture technology.BRN3A positive ganglion cells, CALBINDIN positive horizontal cells and CHAT positive amacrine cells appeared on day 30 of differentiation.RECOVERIN positive photoreceptors arose on day 45 of differentiation.PKCα positive bipolar cells presented on day 90 of differentiation.Ganglion cells were shown in the deep layer of retinal organoids, and horizontal cells, amacrine cells and bipolar cells in the middle layer, and photoreceptors in the top layer.

ConclusionsCrx-iCreERT2 fluorescent reporter human embryonic stem cell lines are successfully established and can be differentiated into retinal organoids that express tdTomato red fluorescence through 3D culture technology.Those retinal organoids contain the same types of neurons as normal human retinas, and follow a certain temporal and spatial developmental sequence similar to the developmental rules of normal human retinas.Crx-iCreERT2 fluorescent reporter human embryonic stem cell line is a powerful tool for researching retinal development and diseases and can be applied in treatments for blindness.

Retinal organoid;Three-dimensional culture;Embryonic stem cell;Photoreceptor precursor
Shen Yin, Email: nc.defudabe.uhwnehsniy
引用本文

杜雨馨,刘依宗,阎飞跃,等. CRISPR/Cas9技术介导Crx-iCreERT2红色荧光报告人胚胎干细胞系的构建及其三维视网膜类器官培养[J]. 中华实验眼科杂志,2021,39(05):388-397.

DOI:10.3760/cma.j.cn115989-20210208-00103

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
视网膜退行性疾病包括视网膜色素变性、Leber先天性黑矇、年龄相关性黄斑变性等,均伴随光感受器功能障碍和丧失,最终导致视力障碍和盲 [ 1 ]。在疾病早期阶段,视网膜内尚有相当数量的光感受器细胞存在,将其作为靶细胞进行基因治疗和基因编辑是非常有前景的治疗方法。在光感受器细胞已大量丧失的疾病晚期阶段,以恢复视网膜光敏性为目的的替代策略正处于探索阶段,包括光遗传工具、光敏开关、视网膜假体和光感受器移植 [ 2 , 3 , 4 ],其中光感受器移植是一种很有前途的再生策略,影响其治疗效果的一个重要因素为供体细胞的来源 [ 5 ]。视网膜变性疾病的细胞治疗中首选活性强、有丝分裂后的原代光感受器细胞,即光感受器前体细胞 [ 6 , 7 , 8 , 9 ]。移植后光感受器前体细胞较成熟的光感受器细胞有更高的存活率,在视网膜下间隙可有效成熟,对晚期视网膜变性的功能修复有一定效果 [ 10 , 11 , 12 ]。以往研究利用2D培养系统从胚胎干细胞(embryonic stem cells,ESCs)和诱导多能干细胞(induced pluripotent stem cells,iPSCs)中获得可移植的光感受器,但其效率低,仅有不足20%的细胞表达光感受器特异性标志物 [ 13 ]。3D培养是指在体外培养时为细胞提供一个接近体内微环境的培养技术。近年来其在体外生物科学领域迅速发展,实现了体外类器官的培养。2011年,Eiraku等 [ 14 ]在体外培养光感受器方面取得了重大突破,首次通过3D培养技术将小鼠ESCs诱导分化为视杯。目前已有许多从人ESCs和iPSCs产生神经视网膜类器官的3D培养方案 [ 15 , 16 , 17 ]。随着培养技术的进步,理论上可以实现从ESCs及iPSCs产生无限数量的可移植光感受器,光感受器移植用于临床的基本前提已经确立 [ 18 ]。然而筛选出合适的光感受器前体细胞尚需抗原-抗体反应步骤,影响了细胞活性,且带抗体的细胞可能对移植效果有影响。成簇规律间隔的短回文重复序列(clustered regularly interspaced short palindromic repeats,CRISPR)/CRISPR关联(CRISPR associated,Cas)基因是一种原核生物的免疫系统,其可准确识别外源DNA,利用Cas蛋白将DNA双链切断,因此成为第3代基因组定点编辑技术 [ 19 ]。利用CRISPR/Cas技术对细胞系进行基因编辑可实现所需细胞系的构建 [ 20 ]。Crx是一种同源结构域转录因子,为光感受器前体细胞的分子标志物,可用于筛选适合移植的光感受器前体细胞。TdTomato是一种信号非常强的红色荧光蛋白,对细胞和小鼠无明显毒性,是理想的细胞成像工具。本研究中拟通过CRISPR/Cas技术构建Crx-iCreERT2荧光报告人ESCs系,其3D培养得到的视网膜类器官中表达的tdTomato荧光可指示光感受器前体细胞,为光感受器移植疗法提供供体来源及细胞筛选、为人类视网膜发育和疾病发生的相关研究提供支持。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Striebel JF , Race B , Williams K ,et al. Microglia are not required for prion-induced retinal photoreceptor degeneration[J/OL]. Acta Neuropathol Commun, 2019,7(1):48[2021-01-16]. http://www.ncbi.nlm.nih.gov/pubmed/30909963. DOI: 10.1186/s40478-019-0702-x .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Cronin T , Vandenberghe LH , Hantz P ,et al. Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter[J]. EMBO Mol Med, 2014,6(9):1175-1190. DOI: 10.15252/emmm.201404077 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Van Gelder RN . Photochemical approaches to vision restoration[J]. Vision Res, 2015,111(Pt B):134-141. DOI: 10.1016/j.visres.2015.02.001 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Cheng DL , Greenberg PB , Borton DA . Advances in retinal prosthetic research: a systematic review of engineering and clinical characteristics of current prosthetic initiatives[J]. Curr Eye Res, 2017,42(3):334-347. DOI: 10.1080/02713683.2016.1270326 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
da Cruz L , Fynes K , Georgiadis O ,et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration[J]. Nat Biotechnol, 2018,36(4):328-337. DOI: 10.1038/nbt.4114 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
MacLaren RE , Pearson RA , MacNeil A ,et al. Retinal repair by transplantation of photoreceptor precursors[J]. Nature, 2006,444(7116):203-207. DOI: 10.1038/nature05161 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Eberle D , Santos-Ferreira T , Grahl S ,et al. Subretinal transplantation of MACS purified photoreceptor precursor cells into the adult mouse retina[J/OL]. J Vis Exp, 2014, (84):e50932[2021-01-16]. http://www.ncbi.nlm.nih.gov/pubmed/24638161. DOI: 10.3791/50932 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Santos-Ferreira T , Postel K , Stutzki H ,et al. Daylight vision repair by cell transplantation[J]. Stem Cells, 2015,33(1):79-90. DOI: 10.1002/stem.1824 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Smiley S , Nickerson PE , Comanita L ,et al. Establishment of a cone photoreceptor transplantation platform based on a novel cone-GFP reporter mouse line[J/OL]. Sci Rep, 2016,6:22867[2021-01-18]. http://www.ncbi.nlm.nih.gov/pubmed/26965927. DOI: 10.1038/srep22867 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Gust J , Reh TA . Adult donor rod photoreceptors integrate into the mature mouse retina[J]. Invest Ophthalmol Vis Sci, 2011,52(8):5266-5272. DOI: 10.1167/iovs.10-6329 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Eberle D , Kurth T , Santos-Ferreira T ,et al. Outer segment formation of transplanted photoreceptor precursor cells[J/OL]. PLoS One, 2012,7(9):e46305[2021-02-01]. http://www.ncbi.nlm.nih.gov/pubmed/23029471. DOI: 10.1371/journal.pone.0046305 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Singh MS , Charbel Issa P , Butler R ,et al. Reversal of end-stage retinal degeneration and restoration of visual function by photoreceptor transplantation[J]. Proc Natl Acad Sci USA, 2013,110(3):1101-1106. DOI: 10.1073/pnas.1119416110 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Osakada F , Ikeda H , Mandai M ,et al. Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells[J]. Nat Biotechnol, 2008,26(2):215-224. DOI: 10.1038/nbt1384 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Eiraku M , Takata N , Ishibashi H ,et al. Self-organizing optic-cup morphogenesis in three-dimensional culture[J]. Nature, 2011,472(7341):51-56. DOI: 10.1038/nature09941 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Pearson RA , Gonzalez-Cordero A , West EL ,et al. Donor and host photoreceptors engage in material transfer following transplantation of post-mitotic photoreceptor precursors[J/OL]. Nat Commun, 2016,7:13029[2020-10-25]. http://www.ncbi.nlm.nih.gov/pubmed/27701378. DOI: 10.1038/ncomms13029 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Mandai M , Watanabe A , Kurimoto Y ,et al. Autologous induced stem-cell-derived retinal cells for macular degeneration[J]. N Engl J Med, 2017,376(11):1038-1046. DOI: 10.1056/NEJMoa1608368 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
孙筱谢浩寰章梅视网膜类器官在体移植及感光细胞长期存活实验研究[J]中华实验眼科杂志 202038(10):829-836DOI: 10.3760/cma.j.cn.115989-20200331-00227
返回引文位置Google Scholar
百度学术
万方数据
Sun X , Xie HH , Zhang M ,et al. Transplantation of retinal organoids in vivo and long-term survival of photoreceptor cells [J]. Chin J Exp Ophthalmol, 2020,38(10):829-836. DOI: 10.3760/cma.j.cn.115989-20200331-00227 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[18]
Llonch S , Carido M , Ader M . Organoid technology for retinal repair[J]. Dev Biol, 2018,433(2):132-143. DOI: 10.1016/j.ydbio.2017.09.028 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Ishino Y , Shinagawa H , Makino K ,et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. J Bacteriol, 1987,169(12):5429-5433. DOI: 10.1128/jb.169.12.5429-5433.1987 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Cho SW , Kim S , Kim JM ,et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease[J]. Nat Biotechnol, 2013,31(3):230-232. DOI: 10.1038/nbt.2507 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Nakano T , Ando S , Takata N ,et al. Self-formation of optic cups and storable stratified neural retina from human ESCs[J]. Cell Stem Cell, 2012,10(6):771-785. DOI: 10.1016/j.stem.2012.05.009 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Hu Y , Wang X , Hu B ,et al. Dissecting the transcriptome landscape of the human fetal neural retina and retinal pigment epithelium by single-cell RNA-seq analysis[J/OL]. PLoS Biol, 2019,17(7):e3000365[2021-03-29]. http://www.ncbi.nlm.nih.gov/pubmed/31269016. DOI: 10.1371/journal.pbio.3000365 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Galli-Resta L , Ensini M . An intrinsic time limit between genesis and death of individual neurons in the developing retinal ganglion cell layer[J]. J Neurosci, 1996,16(7):2318-2324.
返回引文位置Google Scholar
百度学术
万方数据
[24]
O'Brien KM , Schulte D , Hendrickson AE . Expression of photoreceptor-associated molecules during human fetal eye development[J]. Mol Vis, 2003,9:401-409.
返回引文位置Google Scholar
百度学术
万方数据
[25]
Seiler MJ , Aramant RB , Thomas BB ,et al. Visual restoration and transplant connectivity in degenerate rats implanted with retinal progenitor sheets[J]. Eur J Neurosci, 2010,31(3):508-520. DOI: 10.1111/j.1460-9568.2010.07085.x .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Qian X , Jacob F , Song MM ,et al. Generation of human brain region-specific organoids using a miniaturized spinning bioreactor[J]. Nat Protoc, 2018,13(3):565-580. DOI: 10.1038/nprot.2017.152 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
DiStefano T , Chen HY , Panebianco C ,et al. Accelerated and improved differentiation of retinal organoids from pluripotent stem cells in rotating-wall vessel bioreactors[J]. Stem Cell Reports, 2018,10(1):300-313. DOI: 10.1016/j.stemcr.2017.11.001 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
沈吟,Email: nc.defudabe.uhwnehsniy
B
所有作者均声明不存在任何利益冲突
C
国家重点研发计划"政府间国际科技创新合作/港澳台科技创新合作"重点专项项目 (2017YFE0103400)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号