综述
ENGLISH ABSTRACT
眼非视觉功能在生物感磁过程中的作用
宋思佳
覃思颖
洪颖 [综述]
张纯 [综述]
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20190427-00202
Research progress on the role of non-image forming functions of eyes in magnetoreception of organisms
Song Sijia
Qin Siying
Hong Ying
Zhang Chun
Authors Info & Affiliations
Song Sijia
Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
Qin Siying
Peking University School of Life Science, Beijing 100871, China
Hong Ying
Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
Zhang Chun
Peking University Stem Cell Research Center, Beijing 100191, China
·
DOI: 10.3760/cma.j.cn115989-20190427-00202
0
0
0
0
0
0
PDF下载
APP内阅读
摘要

眼的非视觉功能包括生物昼夜节律的调节以及生物感磁。生物感磁是指各种生物包括人类可通过地磁场获取方向位置信息。具有视网膜结构的生物可能是以视网膜隐花色素蛋白作为磁受体,完成生物感磁过程。生物感磁的假说分别是基于化学反应和自由基对的磁感应假说以及光磁耦合的生物指南针假说。这2个假说都认为视网膜上的分子可能是生物感磁的受体蛋白,眼可能是生物感磁的器官。但基于化学反应和自由基对的磁感应假说认为是通过自由基电子自旋方式的改变,影响了视网膜隐花色素蛋白的分子结构,引起下游化学反应产生不同的化学产物,从而感受到磁场的变化;光磁耦合的生物指南针假说指出隐花色素蛋白作为光受体,与另一种磁受体蛋白经过多聚反应形成棒状小体,光信号和磁信号的耦合影响了棒状的复合体指向的变化。这些视网膜上的改变再通过某种途径传输至大脑,从而产生方向感。研究生物感磁有助于从新的角度诊断和治疗眼脑疾病,并且带来磁敏材料领域的革新。本文就眼非视觉功能、生物感磁过程的机制假说和眼非视觉功能在生物感磁过程中可能的作用机制进行综述。

非视觉功能;生物感磁;隐花色素;磁受体蛋白
ABSTRACT

Non-image forming functions of eyes include the regulation of biological circadian rhythm and biological magnetoreception.Biological magnetoreception means that various organisms including human obtain the direction and position information through the geomagnetic field.Creatures with retina realize magnetoreception regarding retinal cryptochrome as magnetoreceptor.Hypotheses of magnetoreception contain the radical-pair theory and the biological compass theory.The two theories both reckon retinal elements as possible receptor protein of magnetoreception, and eyes as receptor organ.The radical-pair theory suggests that change of radical spin influences the structure of retinal cryptochrome, leading to different downstream chemical reaction products, which makes the variable magnetic field information perceivable.And the biological compass theory proposes a rod-like complex composed of polymerized cryptochromes and magnetoreceptor proteins, which can point to different directions due to light and magnetic signals.These changes in retina transmit geomagnetic field signal to the brain, and then sense of direction is formed.Researching biological magnetoreception promotes a novel perspective in the diagnosis and treatment of eye and brain diseases, and brings innovation in magnetic material field.In this article, non-image forming functions of eyes, hypotheses of magnetoreception and possible mechanism of non-image forming functions of eyes in magnetoreception were reviewed.

Non-image forming function;Magnetoreception;Cryptochrome;Magnetoreceptor protein
Corresponding authors: Hong Ying, Email: mocdef.labiamtohwodahsgnoh;
Zhang Chun, Email: mocdef.oabohay1cgnahz
引用本文

宋思佳,覃思颖,洪颖,等. 眼非视觉功能在生物感磁过程中的作用[J]. 中华实验眼科杂志,2021,39(06):568-571.

DOI:10.3760/cma.j.cn115989-20190427-00202

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
眼是人和动物利用光感知外界事物的视觉器官。眼非视觉功能是指眼除了传递视觉信息之外的功能,例如调节昼夜节律以及其相关的瞳孔舒缩、情绪变化等生理过程,还包含参与生物感磁的过程 [ 1 ]。生物感磁是指生物具备感应周围磁场的能力。生物可通过周围磁场,主要是地磁场,获取方向、位置信息,从而迁徙至更利于自身生存繁衍的环境。关于生物感磁行为的研究已有50余年的历史,从低等细菌到人类,许多生物存在与磁场相关的生理活动 [ 2 , 3 , 4 , 5 ],生物感磁机制的研究随之而至。近年来研究者发现蓝光与生物感磁的相关性,从迁徙鸟类视网膜中发现的蓝光受体蛋白隐花色素(cryptochrome,Cry)成为最可能的磁受体 [ 6 ]。本文就Cry介导的眼非视觉功能在生物感磁过程中的作用进行综述。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Aranda ML Schmidt TM . Diversity of intrinsically photosensitive retinal ganglion cells:circuits and functions[J]Cell Mol Life Sci 202178(3)∶889-907. DOI: 10.1007/s00018-020-03641-5 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Lohmann KJ Willows AO . Lunar-modulated geomagnetic orientation by a marine mollusk[J]Science 1987235(4786)∶331-334. DOI: 10.1126/science.3798115 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Hsu CY Li CW . Magnetoreception in honeybees[J]Science 1994265(5168)∶95-97. DOI: 10.1126/science.265.5168.95 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Wiltschko R Wiltschko W Pigeon homing:does initial orientation include a 'preferred compass direction’?[J]J Comp Physiol A 1985157(4)∶469-476. DOI: 10.1007/BF00615147 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Reppert SM de Roode JC . Demystifying monarch butterfly migration[J]Curr Biol 201828(17)∶R1009-R1022. DOI: 10.1016/j.cub.2018.02.067 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Chaves I Pokorny R Byrdin M et al. The cryptochromes:blue light photoreceptors in plants and animals[J]Annu Rev Plant Biol 201162335-364. DOI: 10.1146/annurev-arplant-042110-103759 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Berson DM Dunn FA Takao M Phototransduction by retinal ganglion cells that set the circadian clock[J]Science 2002295(5557)∶1070-1073. DOI: 10.1126/science.1067262 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
张敬学王宁利生物钟"看到"光的视觉基础——内在光感受性视网膜神经节细胞[J]中华实验眼科杂志 201836(11)∶879-882. DOI: 10.3760/cma.j.issn.2095-0160.2018.11.013 .
返回引文位置Google Scholar
百度学术
万方数据
Zhang JX Wang NL . The visual basis of the biological clock " sees" the light:intrinsically photosensitive retinal ganglion cells[J]Chin J Exp Ophthalmol 201836(11)∶879-882. DOI: 10.3760/cma.j.issn.2095-0160.2018.11.013 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[9]
Purrier N Engeland WC Kofuji P Mice deficient of glutamatergic signaling from intrinsically photosensitive retinal ganglion cells exhibit abnormal circadian photoentrainment[J/OL]PLoS One 20149(10)∶e111449[2020-06-01]http://www.ncbi.nlm.nih.gov/pubmed/25357191. DOI: 10.1371/journal.pone.0111449 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Li RS Chen BY Tay DK et al. Melanopsin-expressing retinal ganglion cells are more injury-resistant in a chronic ocular hypertension model[J]Invest Ophthalmol Vis Sci 200647(7)∶2951-2958. DOI: 10.1167/iovs.05-1295 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
LeGates TA Fernandez DC Hattar S Light as a central modulator of circadian rhythms,sleep and affect[J]Nat Rev Neurosci 201415(7)∶443-454. DOI: 10.1038/nrn3743 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Lazzerini Ospri L Prusky G Hattar S Mood,the circadian system,and melanopsin retinal ganglion cells[J]Annu Rev Neurosci 201740539-556. DOI: 10.1146/annurev-neuro-072116-031324 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Do M Melanopsin and the intrinsically photosensitive retinal ganglion cells:biophysics to behavior[J]Neuron 2019104(2)∶205-226. DOI: 10.1016/j.neuron.2019.07.016 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Ostrin LA Strang CE Chang K et al. Immunotoxin-induced ablation of the intrinsically photosensitive retinal ganglion cells in Rhesus Monkeys[J/OL]Front Neurol 201891000[2020-05-02]http://www.ncbi.nlm.nih.gov/pubmed/30542318. DOI: 10.3389/fneur.2018.01000 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Ksendzovsky A Pomeraniec IJ Zaghloul KA et al. Clinical implications of the melanops in-based non-image-forming visual system [J]Neurology 201788(13)∶1282-1290. DOI: 10.1212/WNL.0000000000003761 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
徐金华林琳王育良光照节律改变对大鼠视网膜中Cry2表达的影响[J]中华实验眼科杂志 201230(11)∶994-998. DOI: 10.3760/cma.j.issn.2095-0160.2012.11.008 .
返回引文位置Google Scholar
百度学术
万方数据
Xu JH Lin L Wang YL et al. Effect of light rhythm on the expression of cryptochrom 2 in retina[J]Chin J Exp Ophthalmol 201230(11)∶994-998. DOI: 10.3760/cma.j.issn.2095-0160.2012.11.008 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[17]
Baker RR . Goal orientation by blindfolded humans after long-distance displacement:possible involvement of a magnetic sense[J]Science 1980210(4469)∶555-557. DOI: 10.1126/science.7423208 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Wang CX Hilburn IA Wu DA et al. Transduction of the geomagnetic field as evidenced from alpha-band activity in the human brain[J/OL]eNeuro 20196(2)∶ENEURO.0483-18[2020-06-15]https://pubmed.ncbi.nlm.nih.gov/31028046/. DOI: 10.1523/ENEURO.0483-18.2019 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Blakemore R Magnetotactic bacteria[J]Science 1975190(4212)∶377-379. DOI: 10.1126/science.170679 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Ritz T Adem S Schulten K A model for photoreceptor-based magnetoreception in birds[J]Biophys J 200078(2)∶707-718. DOI: 10.1016/S0006-3495(00)76629-X .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Qin S Yin H Yang C et al. A magnetic protein biocompass[J]Nat Mater 201615(2)∶217-226. DOI: 10.1038/nmat4484 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Ahmad M Galland P Ritz T et al. Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana[J]Planta 2007225(3)∶615-624. DOI: 10.1007/s00425-006-0383-0 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Wiltschko R Stapput K Bischof HJ et al. Light-dependent magnetoreception in birds:increasing intensity of monochromatic light changes the nature of the response[J/OL]Front Zool 200745[2020-06-06]http://www.ncbi.nlm.nih.gov/pubmed/17302975. DOI: 10.1186/1742-9994-4-5 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Wiltschko W Wiltschko R Light-dependent magnetoreception in birds:the behaviour of European robins,Erithacus rubecula,under monochromatic light of various wavelengths and intensities[J]J Exp Biol 2001204(Pt 19)∶3295-3302.
返回引文位置Google Scholar
百度学术
万方数据
[25]
陈薇王晓明孙红宾隐花色素——生物磁感应蛋白[J]中国生物化学与分子生物学报 201430(10)∶973-978. DOI: 10.13865/j.cnki.cjbmb.2014.10.04 .
返回引文位置Google Scholar
百度学术
万方数据
Chen W Wang XM Sun HB . Cryptochrome:a light-dependent magnetoreceptor[J]Chin J Biochem Mol Biol 201430(10)∶973-978. DOI: 10.13865/j.cnki.cjbmb.2014.10.04 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[26]
Giovani B Byrdin M Ahmad M et al. Light-induced electron transfer in a cryptochrome blue-light photoreceptor[J]Nat Struct Biol 200310(6)∶489-490. DOI: 10.1038/nsb933 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Lacombat F Espagne A Dozova N et al. Ultrafast oxidation of a tyrosine by proton-coupled electron transfer promotes light activation of an animal-like cryptochrome[J/OL]J Am Chem Soc 2019141(34)∶13394-13409[2020-06-25]https://pubmed.ncbi.nlm.nih.gov/31368699/. DOI: 10.1021/jacs.9b03680 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Hore PJ Mouritsen H The radical-pair mechanism of magnetoreception[J]Annu Rev Biophys 201645299-344. DOI: 10.1146/annurev-biophys-032116-094545 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Cailliez F Müller P Firmino T et al. Energetics of photoinduced charge migration within the tryptophan tetrad of an animal (6-4) photolyase[J]J Am Chem Soc 2016138(6)∶1904-1915. DOI: 10.1021/jacs.5b10938 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Müller P Yamamoto J Martin R et al. Dis covery and functional analysis of a 4th electron-transferring tryptophan conserved exclusively in animal cryptochromes and (6-4) photolyases [J/OL]Chem Commun (Camb) 201551(85)∶15502-15505[2020-06-07]http://www.ncbi.nlm.nih.gov/pubmed/26355419. DOI: 10.1039/c5cc06276d .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Baik LS Au DD Nave C et al. Distinct mechanisms of Drosophila CRYPTOCHROME-mediated light-evoked membrane depolarization and in vivo clock resetting [J/OL]Proc Natl Acad Sci USA 2019116(46)∶23339-23344[2020-06-29]https://pubmed.ncbi.nlm.nih.gov/31659046/. DOI: 10.1073/pnas.1905023116 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Bolte P Bleibaum F Einwich A et al. Localisation of the putative magnetoreceptive protein cryptochrome 1b in the retinae of migratory birds and homing pigeons[J/OL]PLoS One 201611(3)∶e0147819[2020-06-09]http://www.ncbi.nlm.nih.gov/pubmed/26953791. DOI: 10.1371/journal.pone.0147819 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Pinzon-Rodriguez A Bensch S Muheim R Expression patterns of cryptochrome genes in avian retina suggest involvement of Cry4 in light-dependent magnetoreception[J/OL]J R Soc Interface 201815(140)∶20180058[2020-06-10]http://www.ncbi.nlm.nih.gov/pubmed/29593090. DOI: 10.1098/rsif.2018.0058 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Nießner C Denzau S Malkemper EP et al. Cryptochrome 1 in retinal cone photoreceptors suggests a novel functional role in mammals[J/OL]Sci Rep 2016621848[2020-06-12]http://www.ncbi.nlm.nih.gov/pubmed/26898837. DOI: 10.1038/srep21848 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Nießner C Gross JC Denzau S et al. Seasonally changing cryptochrome 1b expression in the retinal ganglion cells of a migrating passerine bird[J/OL]PLoS One 201611(3)∶e0150377[2020-06-16]http://www.ncbi.nlm.nih.gov/pubmed/26953690. DOI: 10.1371/journal.pone.0150377 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Mouritsen H Janssen-Bienhold U Liedvogel M et al. Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation[J/OL]Proc Natl Acad Sci USA 2004101(39)∶14294-14299[2019-02-16]https://pubmed.ncbi.nlm.nih.gov/26953690/. DOI: 10.1073/pnas.0405968101 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Thompson CL Bowes Rickman C Shaw SJ et al. Expression of the blue-light receptor cryptochrome in the human retina[J]Invest Ophthalmol Vis Sci 200344(10)∶4515-4521. DOI: 10.1167/iovs.03-0303 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Gegear RJ Casselman A Waddell S et al. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila[J]Nature 2008454(7207)∶1014-1018. DOI: 10.1038/nature07183 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
Bazalova O Kvicalova M Valkova T et al. Cryptochrome 2 mediates directional magnetoreception in cockroaches[J]Proc Natl Acad Sci USA 2016113(6)∶1660-1665. DOI: 10.1073/pnas.1518622113 .
返回引文位置Google Scholar
百度学术
万方数据
[40]
Kattnig DR Evans EW Déjean V et al. Chemical amplification of magnetic field effects relevant to avian magnetoreception[J]Nat Chem 20168(4)∶384-391. DOI: 10.1038/nchem.2447 .
返回引文位置Google Scholar
百度学术
万方数据
[41]
Zwang TJ Tse E Zhong D et al. A compass at weak magnetic fields using thymine dimer repair[J]ACS Cent Sci 20184(3)∶405-412. DOI: 10.1021/acscentsci.8b00008 .
返回引文位置Google Scholar
百度学术
万方数据
[42]
Mouritsen H Long-distance navigation and magnetoreception in migratory animals[J]Nature. 2018558(7708)∶50-59. DOI: 10.1038/s41586-018-0176-1 .
返回引文位置Google Scholar
百度学术
万方数据
[43]
Nielsen C Nørby MS Kongsted J et al. Absorption spectra of FAD embedded in cryptochromes[J]J Phys Chem Lett 20189(13)∶3618-3623. DOI: 10.1021/acs.jpclett.8b01528 .
返回引文位置Google Scholar
百度学术
万方数据
[44]
Hiscock HG Worster S Kattnig DR et al. The quantum needle of the avian magnetic compass[J]Proc Natl Acad Sci USA 2016113(17)∶4634-4639. DOI: 10.1073/pnas.1600341113 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
洪颖,Email: mocdef.labiamtohwodahsgnoh
B
张纯,Email: mocdef.oabohay1cgnahz
C
所有作者均声明不存在利益冲突
D
国家自然科学基金项目 (81670851、81970798)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号