实验研究
ENGLISH ABSTRACT
Cx3cr1抗体玻璃体腔注射对视网膜缺血—再灌注损伤模型小鼠视网膜微循环的保护作用及其机制
李娟娟
陈晨
李妍
张利伟
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20200104-00004
Protective effect and mechanism of cx3cr1 antibody intravitreal injection in microcirculation of retinal ischemia-reperfusion injury in mice
Li Juanjuan
Chen Chen
Li Yan
Zhang Liwei
Authors Info & Affiliations
Li Juanjuan
Department of Ophthalmology, Affiliated Hospital of Yunnan University, Key Laboratory of Yunnan Province for the Prevention and Treatment of Ophthalmology, Kunming 650021, China
Chen Chen
Department of Ophthalmology, Affiliated Hospital of Yunnan University, Key Laboratory of Yunnan Province for the Prevention and Treatment of Ophthalmology, Kunming 650021, China
Li Yan
Department of Ophthalmology, Affiliated Hospital of Yunnan University, Key Laboratory of Yunnan Province for the Prevention and Treatment of Ophthalmology, Kunming 650021, China
Zhang Liwei
Department of Ophthalmology, Affiliated Hospital of Yunnan University, Key Laboratory of Yunnan Province for the Prevention and Treatment of Ophthalmology, Kunming 650021, China
·
DOI: 10.3760/cma.j.cn115989-20200104-00004
0
0
0
0
0
0
PDF下载
APP内阅读
摘要

目的探讨小胶质细胞活化抑制剂C-X3-C基序趋化因子受体1(cx3cr1)抗体玻璃体腔注射对视网膜缺血—再灌注损伤(RIR)过程中视网膜微循环的保护作用及其可能机制。

方法采用随机数字表法将150只成年健康C57BL/6小鼠随机分为空白对照组、模型组和cx3cr1抗体注射组,每组各50只。空白对照组小鼠仅玻璃体腔注射无菌注射用水2 μl,模型组小鼠采用前房灌注升高眼压法建立RIR模型,cx3cr1抗体注射组小鼠玻璃体腔注射0.2 μg/μl cx3cr1抗体2 μl,注射后4 h建立RIR模型。于造模后3 d采用免疫荧光染色法检查各组小鼠实验眼冰冻切片中各层视网膜结构Iba-1阳性表达以评估小胶质细胞活化情况;采用视网膜铺片血管染色法观察视网膜深层和浅层血管密度变化及活化小胶质细胞数以评估视网膜微循环改变;采用FITC-dextran造影法测定视网膜血管渗漏面积;采用实时荧光定量PCR法测定视网膜中缺氧相关因子及炎性因子mRNA表达变化。

结果眼球冰冻切片免疫荧光染色结果显示,空白对照组中Iba-1阳性小胶质细胞稀疏分布于视网膜神经节细胞层和内丛状层,呈分支形态;模型组Iba-1阳性细胞数量明显增多,呈阿米巴样或球形,并明显向外丛状层、外核层等视网膜外层移动;cx3cr1抗体注射组球形或阿米巴样的Iba-1阳性细胞数较模型组明显减少;模型组小鼠视网膜各层活化小胶质细胞数明显多于空白对照组和cx3cr1抗体注射组,差异均有统计学意义(均 P<0.05)。与模型组比较,cx3cr1抗体注射组小鼠视网膜血管周围活化小胶质细胞数量明显减少。视网膜铺片血管与活化小胶质细胞共染色结果显示,空白对照组和cx3cr1抗体注射组小鼠视网膜深层血管密度均明显高于模型组,cx3cr1抗体注射组浅层及深层视网膜血管周围小胶质细胞数量较模型组明显减少,差异均有统计学意义(均 P<0.05)。空白对照组、模型组和cx3cr1抗体注射组血管相对渗漏率分别为(100.0±4.7)%、(162.1±10.6)%和(130.5±9.5)%,总体比较差异有统计学意义( F=128.66, P<0.01),cx3cr1抗体注射组小鼠视网膜血管相对渗漏率明显低于模型组,差异有统计学意义( P<0.05)。实时荧光定量PCR结果显示,与模型组比较,cx3cr1抗体注射组和空白对照组小鼠视网膜中血管内皮生长因子A(VEGF-A)、缺氧诱导因子-1α(HIF-1α)、肿瘤坏死因子-α(TNF-α)和白细胞介素-1β(IL-1β)mRNA相对表达量均明显降低,差异均有统计学意义(均 P<0.05)。

结论Cx3cr1抗体玻璃体腔注射可对RIR模型小鼠的视网膜微循环系统血管完整性发挥保护作用。

视网膜;缺血—再灌注损伤;微循环;小胶质细胞;细胞因子;近交系C57BL小鼠
ABSTRACT

ObjectiveTo investigate the protective effect of C-X3-C motif chemokine receptor 1 (cx3cr1) antibody, a microglia activation inhibitor, on microcirculation during retinal ischemia reperfusion (RIR) and its possible mechanism.

MethodsOne hundred and fifty healthy adult C57BL/6 mice were randomized into blank control group, model group and cx3cr1 injection group by random number table method, with 50 mice in each group.The RIR model was established by anterior chamber infusion to elevate intraocular pressure in this study.Mice in the blank control group were intravitreally injected with 2 μl of sterile water.In the cx3cr1 injection group, the RIR model was established at 4 hours after the intravitreal injection (2 μl) of 0.2 μg/μl cx3cr1 antibody.Immunofluorescence staining of frozen eyeball sections was performed to assess the microglia activation by observing the Iba-1 positive expression in different retinal layers three days following the model establishment.Retinal preparation vascular staining was carried out to observe the changes in the density of deep and shallow retinal blood vessels and the number of activated microglia to evaluate the changes in retinal microcirculation.FITC-dextran contrast method was used to determine the retinal vascular leakage area.Real-time fluorescent quantitative polymerase chain reaction (qPCR) method was employed to detect the mRNA expression changes of hypoxia-related factors and inflammatory factors in the mice retina.The study protocol was approved by an Ethics Committee of Kunming Medical University (No.20180106). The use and care of the animals complied with the Regulations of the Administration of Affair Concerning Experimental Animals.

ResultsThe immunofluorescence staining result of eyeball frozen section showed that in the blank control group, Iba-1 positive microglial cells were sparsely distributed in the retinal ganglion cell layer and inner plexiform layer, presenting branched state.In the model group, Iba-1 positive microglial cells were increased and moved outward to the outer retinal plexiform layer and outer nuclear layer obviously, showing globular or amoeba-like.The number of globular or amoeba-like Iba-1 positive cells was significantly reduced in the cx3cr1 injection group in comparison with the model group ( P<0.05). The number of activated microglial cells in different retinal layers of the model group was significantly larger than that of the cx3cr1 injection group and the blank control group (both at P<0.05). Compared with the model group, the number of activated microglial cells around the retinal blood vessels was reduced significantly in the cx3cr1 injection group.The double fluorescence result of retinal vascular staining and activated microglial cells showed that the density of deep blood vessels in the blank control group and cx3cr1 injection group was significantly higher than that of the model group, and the number of microglial cells around superficial and deep retinal vessels was significantly larger in the model group than that of the cx3cr1 injection group (all at P<0.05). The relative vascular leakage rate of the blank control group, model group and cx3cr1 injection group were (100.0±4.7)%, (162.1±10.6)% and (130.5±9.5)%, respectively, and the overall difference was statistically significant ( F=128.66, P<0.01). The relative vascular leakage rate in the cx3cr1 injection group was significantly lower than that in the model group ( P<0.05). The qPCR result showed that the relative expression levels of vascular endothelial growth factor-A (VEGF-A), hypoxia inducible factor-1a (HIF-1α), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) mRNA were significantly reduced in the retina of the cx3cr1 injection group in comparison with the model group (all at P<0.05).

ConclusionsIntravitreal injection of cx3cr1 can protect the vascular integrity of the retinal microcirculation system in RIR mice.

Retina;Ischemia-reperfusion injury;Microcirculation;Microglia;Cytokines;Inbred C57BL mice
Zhang Liwei, Email: mocdef.3ab61iewilgnahzrd
引用本文

李娟娟,陈晨,李妍,等. Cx3cr1抗体玻璃体腔注射对视网膜缺血—再灌注损伤模型小鼠视网膜微循环的保护作用及其机制[J]. 中华实验眼科杂志,2021,39(07):585-592.

DOI:10.3760/cma.j.cn115989-20200104-00004

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
视网膜缺血—再灌注损伤(retinal ischemia-reperfusion,RIR)是多种视网膜血管性疾病的共同病理过程。以往RIR的研究多集中于神经细胞保护,而微循环作为神经血管单元的重要组成部分,其损伤也是该类疾病的重要病理改变。神经组织缺血研究发现,活化的小胶质细胞可直接吞噬血管内皮细胞造成血管结构崩解,也可诱导过度的炎症反应造成血管屏障功能破坏,从而导致微循环损伤 [ 1 , 2 ]。本课题组前期研究已证实,活化的小胶质细胞在RIR中对微循环产生破坏作用,抑制小胶质细胞活化可减少视网膜中炎性因子的释放 [ 3 ]。因此,抑制小胶质细胞的活化可能是保护缺血组织微循环的重要途径。C-X3-C基序趋化因子受体1(C-X3-C motif chemokine receptor 1,cx3cr1)是主要表达于小胶质细胞的一种趋化因子受体,cx3cr1抗体与cx3cr1结合后,可以抑制小胶质细胞的活性 [ 4 ]。本研究拟探讨cx3cr1抗体对RIR过程中视网膜微循环的保护作用,以期为临床上相关疾病的治疗提供新的思路和方法。
参考文献
[1]
Jolivel V Bicker F Binamé F et al. Perivascular microglia promote blood vessel disintegration in the ischemic penumbra[J]Acta Neuropathol 2015129(2)∶279-295. DOI: 10.1007/s00401-014-1372-1 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Li JB Lu ZG Xu L et al. Neuroprotective effects of bis(7)-tacrine in a rat model of pressure-induced retinal ischemia[J]Cell Biochem Biophys 201468(2)∶275-282. DOI: 10.1007/s12013-013-9707-4 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
李娟娟李燕汤志伟Cx3cr1抗体玻璃体腔注射对视网膜缺血—再灌注损伤大鼠视网膜神经元的保护作用及机制[J]中华实验眼科杂志 201634(1)∶35-41. DOI: 10.3760/cma.j.issn.2095-0160.2016.01.007 .
返回引文位置Google Scholar
百度学术
万方数据
Li JJ Li Y Tang ZW . The protective effects and mechanisms of cx3cr1 antibody on retinal neuron in rats with ischemia reperfusion injury by intravitreal injection[J]Chin J Exp Ophthalmol 201634(1)∶35-41. DOI: 10.3760/cma.j.issn.2095-0160.2016.01.007 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[4]
Tang Z Gan Y Liu Q et al. CX3CR1 deficiency suppresses activation and neurotoxicity of microglia/macrophage in experimental ischemic stroke[J/OL]J Neuroinflammation 20141126[2019-12-10]http://www.ncbi.nlm.nih.gov/pubmed/24490760. DOI: 10.1186/1742-2094-11-26 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Tenkumo K Hirooka K Sherajee SJ et al. Effect of the renin inhibitor aliskiren against retinal ischemia-reperfusion injury[J]Exp Eye Res 2014122110-118. DOI: 10.1016/j.exer.2014.03.011 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Dvoriantchikova G Degterev A Ivanov D Retinal ganglion cell (RGC) programmed necrosis contributes to ischemia-reperfusion-induced retinal damage[J]Exp Eye Res 20141231-7. DOI: 10.1016/j.exer.2014.04.009 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Kezic JM Chrysostomou V Trounce IA et al. Effect of anterior chamber cannulation and acute IOP elevation on retinal macrophages in the adult mouse[J]Invest Ophthalmol Vis Sci 201354(4)∶3028-3036. DOI: 10.1167/iovs.13-11865 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Tong N Zhang Z Zhang W et al. Diosmin alleviates retinal edema by protecting the blood-retinal barrier and reducing retinal vascular permeability during ischemia/reperfusion injury[J/OL]PLoS One 20138(4)∶e61794[2019-12-12]http://www.ncbi.nlm.nih.gov/pubmed/23637907. DOI: 10.1371/journal.pone.0061794 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Abcouwer SF Lin CM Wolpert EB et al. Effects of ischemic preconditioning and bevacizumab on apoptosis and vascular permeability following retinal ischemia-reperfusion injury[J]Invest Ophthalmol Vis Sci 201051(11)∶5920-5933. DOI: 10.1167/iovs.10-5264 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Reshef R Kreisel T Beroukhim Kay D et al. Microglia and their CX3CR1 signaling are involved in hippocampal-but not olfactory bulb-related memory and neurogenesis[J/OL]Brain Behav Immun 201441239-250[2021-03-11]http://www.ncbi.nlm.nih.gov/pubmed/24933434. DOI: 10.1016/j.bbi.2014.04.009 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Zhan Y Paolicelli RC Sforazzini F et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior[J]Nat Neurosci 201417(3)∶400-406. DOI: 10.1038/nn.3641 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Ebneter A Kokona D Schneider N et al. Microglia activation and recruitment of circulating macrophages during ischemic experimental branch retinal vein occlusion[J/OL]Invest Ophthalmol Vis Sci 201758(2)∶944-953[2021-03-11]http://www.ncbi.nlm.nih.gov/pubmed/28170538. DOI: 10.1167/iovs.16-20474 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Al-Banna NA Pavlovic D Gründling M et al. Impact of antibiotics on the microcirculation in local and systemic inflammation[J]Clin Hemorheol Microcirc 201353(1-2)∶155-169. DOI: 10.3233/CH-2012-1583 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Al-Banna NA Toguri JT Kelly ME et al. Leukocyte-endothelial interactions within the ocular microcirculation in inflammation and infection[J]Clin Hemorheol Microcirc 201355(4)∶423-443. DOI: 10.3233/CH-131780 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Hudson N Powner MB Sarker MH et al. Differential apicobasal VEGF signaling at vascular blood-neural barriers[J]Dev Cell 201430(5)∶541-552. DOI: 10.1016/j.devcel.2014.06.027 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Sandercoe TM Geller SF Hendrickson AE et al. VEGF expression by ganglion cells in central retina before formation of the foveal depression in monkey retina:evidence of developmental hypoxia[J]J Comp Neurol 2003462(1)∶42-54. DOI: 10.1002/cne.10705 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Sarra GM Sarra FG Schlichtenbrede FC et al. Effect of steroidal and non-steroidal drugs on the microglia activation pattern and the course of degeneration in the retinal degeneration slow mouse[J]Ophthalmic Res 200537(2)∶72-82. DOI: 10.1159/000084248 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Kelch ID Bogle G Sands GB et al. Organ-wide 3D-imaging and topological analysis of the continuous microvascular network in a murine lymph node[J/OL]Sci Rep 2015516534[2019-12-14]http://www.ncbi.nlm.nih.gov/pubmed/26567707. DOI: 10.1038/srep16534 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
张利伟,Email: mocdef.3ab61iewilgnahzrd
B
所有作者均声明不存在利益冲突
C
国家自然科学基金项目 (81860171)
云南省卫生健康委员会医学学科带头人培养计划项目 (D-2019021)
云南省医疗卫生单位内设研究机构科研项目 (2018NS0011)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号