专家论坛
ENGLISH ABSTRACT
计算病理及其对精准医学的价值
顾松
鲁浩达
谢嘉伟
陈骏
樊祥山
徐军
作者及单位信息
·
DOI: 10.3760/cma.j.cn112151-20201130-00878
Computational pathology and its contributions to precision medicine
Gu Song
Lu Haoda
Xie Jiawei
Chen Jun
Fan Xiangshan
Xu Jun
Authors Info & Affiliations
Gu Song
Institute for AI in Medicine & School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China
Lu Haoda
Institute for AI in Medicine & School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China
Xie Jiawei
Institute for AI in Medicine & School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China
Chen Jun
Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
Fan Xiangshan
Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
Xu Jun
Institute for AI in Medicine & School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China
·
DOI: 10.3760/cma.j.cn112151-20201130-00878
2123
190
0
0
3
2
PDF下载
APP内阅读
摘要

病理是疾病诊断的“金标准”,人工智能正逐渐运用到病理专业,引起病理学的巨大变革。计算病理是数字病理和人工智能技术的组合,它利用高性能计算设备对人类知识和经验进行量化建模,辅助病理医师实现更精准、更客观、可重复的诊断。此外,计算病理技术还将辅助医师超越诊断任务,实现疗效预测和预后等更复杂问题的解决,从而进一步推动精准医学的发展。本文讨论计算病理在细胞、组织、切片层次的图像计算,以及基于领域知识启发的组织形态学描述,并讨论它们在实现疾病的辅助检测、诊断、预测和预后等目标及任务的研究进展,最后对计算病理领域存在的挑战以及未来的发展方向作出展望。

引用本文

顾松,鲁浩达,谢嘉伟,等. 计算病理及其对精准医学的价值[J]. 中华病理学杂志,2021,50(08):851-855.

DOI:10.3760/cma.j.cn112151-20201130-00878

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
随着人工智能技术快速发展并运用到病理领域,计算病理应运而生。它以数字病理图像为基础,高性能算法为核心技术,推动病理诊断由定性判断向定量分析发展,不仅有助于缓解我国病理医师紧缺、区域分布不平衡的现状,还对精准医学的研究具有重要意义,逐渐成为医学界、学术界、工业界广泛关注并且共同发展的方向。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
1
Ciresan DC , Giusti A , Gambardella LM ,et al. Mitosis detection in breast cancer histology images with deep neural networks[J]. Med Image Comput Comput Assist Interv, 2013,16(Pt 2):411-418. DOI: 10.1007/978-3-642-40763-5_51 .
返回引文位置Google Scholar
百度学术
万方数据
2
Graham S , Vu QD , Raza S ,et al. Hover-Net: simultaneous segmentation and classification of nuclei in multi-tissue histology images[J]. Med Image Anal, 2019,58:101563. DOI: 10.1016/j.media.2019.101563 .
返回引文位置Google Scholar
百度学术
万方数据
3
Bulten W , Bándi P , Hoven J ,et al. Epithelium segmentation using deep learning in H&E-stained prostate specimens with immunohistochemistry as reference standard[J]. Sci Rep, 2019,9(1):864. DOI: 10.1038/s41598-018-37257-4 .
返回引文位置Google Scholar
百度学术
万方数据
4
Xu J , Cai C , Zhou Y ,et al. Multi-tissue partitioning for whole slide images of colorectal cancer histopathology images with deeptissue net[C]. European Congress on Digital Pathology, 2019:100-108. DOI: 10.1007/978-3-030-23937-4_12 .
返回引文位置Google Scholar
百度学术
万方数据
5
Chen H , Qi X , Yu L ,et al. DCAN: deep contour-aware networks for object instance segmentation from histology images[J]. Med Image Anal, 2017,36:135-146. DOI: 10.1016/j.media.2016.11.004 .
返回引文位置Google Scholar
百度学术
万方数据
6
Campanella G , Hanna MG , Geneslaw L ,et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images[J]. Nat Med, 2019,25(8):1301-1309. DOI: 10.1038/s41591-019-0508-1 .
返回引文位置Google Scholar
百度学术
万方数据
7
Verhoef EI , van Cappellen WA , Slotman JA ,et al. Three-dimensional architecture of common benign and precancerous prostate epithelial lesions[J]. Histopathology, 2019,74(7):1036-1044. DOI: 10.1111/his.13848 .
返回引文位置Google Scholar
百度学术
万方数据
8
Yan C , Nakane K , Wang X ,et al. Automated gleason grading on prostate biopsy slides by statistical representations of homology profile[J]. Comput Methods Programs Biomed, 2020,194:105528. DOI: 10.1016/j.cmpb.2020.105528 .
返回引文位置Google Scholar
百度学术
万方数据
9
Wan T , Cao J , Chen J ,et al. Automated grading of breast cancer histopathology using cascaded ensemble with combination of multi-level image features[J]. Neurocomputing, 2017,229:34-44. DOI: 10.1016/j.neucom.2016.05.084 .
返回引文位置Google Scholar
百度学术
万方数据
10
Skrede OJ , De Raedt S , Kleppe A ,et al. Deep learning for prediction of colorectal cancer outcome: a discovery and validation study[J]. Lancet, 2020,395(10221):350-360. DOI: 10.1016/S0140-6736(19)32998-8 .
返回引文位置Google Scholar
百度学术
万方数据
11
Lu C , Koyuncu C , Corredor G ,et al. Feature-driven local cell graph (FLocK): New computational pathology-based descriptors for prognosis of lung cancer and HPV status of oropharyngeal cancers[J]. Med Image Anal, 2021,68:101903. DOI: 10.1016/j.media.2020.101903 .
返回引文位置Google Scholar
百度学术
万方数据
12
Corredor G , Wang X , Zhou Y ,et al. Spatial architecture and arrangement of tumor-infiltrating lymphocytes for predicting likelihood of recurrence in early-stage non-small cell lung cancer[J]. Clin Cancer Res, 2019,25(5):1526-1534. DOI: 10.1158/1078-0432.CCR-18-2013 .
返回引文位置Google Scholar
百度学术
万方数据
13
徐春燕,谢嘉伟,杨春霞,. 基于病理穿刺切片组织形态学分析的乳腺癌新辅助化疗疗效预测[J]. 四川大学学报(医学版), 2021,52(2):279-285. DOI: 10.12182/20210360505 .
返回引文位置Google Scholar
百度学术
万方数据
14
Bian Y , Zhao Z , Jiang H ,et al. Noncontrast radiomics approach for predicting grades of nonfunctional pancreatic neuroendocrine tumors[J]. J Magn Reson Imaging, 2020,52(4):1124-1136. DOI: 10.1002/jmri.27176 .
返回引文位置Google Scholar
百度学术
万方数据
15
王荃,沈勤,张泽林,. 基于深度学习和组织形态分析的肺癌基因突变预测[J]. 生物医学工程学杂志, 2020,37(1):10-18. DOI: 10.7507/1001-5515.201904018 .
返回引文位置Google Scholar
百度学术
万方数据
16
Vaidya P , Bera K , Gupta A ,et al. CT derived radiomic score for predicting the added benefit of adjuvant chemotherapy following surgery in stage Ⅰ,Ⅱ resectable non-small cell lung cancer: a retrospective multicohort study for outcome prediction[J]. Lancet Digit Health, 2020,2(3):e116-e128. DOI: 10.1016/S2589-7500(20)30002-9 .
返回引文位置Google Scholar
百度学术
万方数据
17
Chen RJ , Lu MY , Wang J ,et al. Pathomic fusion: an integrated framework for fusing histopathology and genomic features for cancer diagnosis and prognosis[J]. IEEE Trans Med Imaging, 2020. DOI: 10.1109/TMI.2020.3021387 .
返回引文位置Google Scholar
百度学术
万方数据
18
Vaidya P , Wang X , Bera K ,et al. P2. 17-35 integrating CT radiomic & quantitative histomorphometric whole slide image features predicts disease free survival in ES-NSCLC[J]. J Thorac Oncol, 2019,14(10):S898. DOI: 10.1016/j.jtho.2019.08.1946 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
徐军,Email: mocdef.labiamggnujux
B

顾松, 鲁浩达, 谢嘉伟, 等. 计算病理及其对精准医学的价值[J]. 中华病理学杂志, 2021, 50(8): 851-855. DOI: 10.3760/cma.j.cn112151-20201130-00878.

C
所有作者均声明不存在利益冲突
D
国家自然科学基金 (U1809205,61771249)
江苏省自然科学基金 (BK20181411)
南京市医学科技发展课题 (YKK19066)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号