综述
ENGLISH ABSTRACT
中性粒细胞、巨噬细胞和树突状细胞吞噬体成熟及其功能研究进展
张婷婷
李轶杰
李金耀
作者及单位信息
·
DOI: 10.3760/cma.j.cn112309-20200828-00416
Progress of phagosome maturation and function in neutrophil, macrophage and dendritic cell
Zhang Tingting
Li Yijie
Li Jinyao
Authors Info & Affiliations
Zhang Tingting
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
Li Yijie
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
Li Jinyao
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
·
DOI: 10.3760/cma.j.cn112309-20200828-00416
0
0
0
0
0
0
PDF下载
APP内阅读
摘要

吞噬体经过早期内体、晚期内体和溶酶体融合的变化,最终生成能降解抗原或杀死病原微生物的过程称为吞噬体成熟。吞噬体在不同免疫细胞中成熟后的功能差异,导致其对抗原摄取后的加工呈现不同的特征。通过比较中性粒细胞、巨噬细胞和树突状细胞3种免疫细胞摄取抗原后的吞噬体功能差异,发现免疫细胞抗原降解能力与抗原提呈能力相反,三者中树突状细胞的抗原提呈能力最强,巨噬细胞次之,中性粒细胞最弱。免疫细胞吞噬体成熟与抗原提呈能力的深入研究,将为疫苗研制和免疫治疗提供新的思路。

吞噬体成熟;功能差异;抗原提呈
ABSTRACT

Phagosomes undergo the fusion of early endosomes, late endosomes and lysosomes, and then degrade antigens and kill pathogenic microorganisms, which is called phagosome maturation. The functional differences of phagosomes after maturation in different immune cells lead to distinct characteristics on their processing of phagocytic antigens. It has been found that the antigen degradation ability of immune cells is opposite to their antigen presentation capacity through comparing the functional differences of phagosomes from neutrophils, macrophages and dendritic cells after antigens uptake. Among them, dendritic cells have the strongest antigen presentation capacity, followed by macrophages and neutrophils. The in-depth study of immune cell phagosome maturation and antigen presentation will provide new strategies for vaccine development and immunotherapy.

Phagosome maturation;Functional differences;Antigen presentation
Li Jinyao, Email: nc.defudabe.ujxujxyjl, Tel: 0086-991-8582500
引用本文

张婷婷,李轶杰,李金耀. 中性粒细胞、巨噬细胞和树突状细胞吞噬体成熟及其功能研究进展[J]. 中华微生物学和免疫学杂志,2021,41(07):565-570.

DOI:10.3760/cma.j.cn112309-20200828-00416

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
吞噬体也称为吞噬小体,是胞吞过程中在被吞噬物质周围形成由细胞膜向细胞内凹陷而成的囊泡结构 [ 1 ]。吞噬体是免疫过程中巨噬细胞(macrophages,MΦ)、中性粒细胞(neutrophil)和树突状细胞(dendritic cell,DC)等免疫细胞常见的亚细胞结构,其功能为杀灭和降解入侵机体的病原微生物,并对相关抗原进行加工提呈 [ 1 ]。Anne-Marie等 [ 2 ]证明吞噬体在成熟过程中需与溶酶体融合,生成兼具隔离与分解异己物质能力的吞噬溶酶体。Savina等 [ 3 ]最早研究了DC吞噬体成熟的功能差异,证明延长吞噬体成熟时间可以增强抗原的提呈能力。此后,中性粒细胞和MΦ吞噬体成熟中功能差异的研究逐渐拓宽这一领域 [ 3 , 4 ]。有效的抗原提呈对疾病的防治起到重要的作用,本文对中性粒细胞、MΦ及DC吞噬体成熟和抗原加工功能的差异进行综述。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
张称宗浩于仁涛. 免疫细胞吞噬体成熟的蛋白质组学研究[J]. 细胞与分子免疫学杂志 2010,26(8):833-835. DOI: 10.13423/j.cnki.cjcmi.005772 .
返回引文位置Google Scholar
百度学术
万方数据
Zhang C , Zong H , Yu RT ,et al. Proteomics research on maturation of immune cell phagosomes[J]. J Cell Mol Immunol, 2010,26(8):833-835. DOI: 10.13423/j.cnki.cjcmi.005772 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[2]
Anne-Marie P , Matthias T , Rudi B ,et al. Patterns, receptors, and signals: regulation of phagosome maturation[J]. Trends Immunol, 2017,38(6):407-422. DOI: 10.1016/j.it.2017.03.006 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Savina A , Amigorena S . Phagocytosis and antigen presentation in dendritic cells[J]. Immunol Rev, 2007,219:143-156. DOI: 10.1111/j.1600-065X.2007.00552.x .
返回引文位置Google Scholar
百度学术
万方数据
[4]
陈静葛令清胡巧珍. 婴幼与成年小鼠腹腔巨噬细胞吞噬体成熟化的差异研究[J]. 中国血液流变学杂志 2015,25(3):267-270. DOI: 10.3969/j.issn.1009-881X.2015.03.006 .
返回引文位置Google Scholar
百度学术
万方数据
Chen J , Ge LQ , Hu QZ . Study on the difference between adult and infant mouse in maturation of pertinent macrophage[J]. Chinese Journal of Hemorheology, 2015,25(3):267-270. DOI: 10.3969/j.issn.1009-881X.2015.03.006 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[5]
Jaumouillé V , Grinstein S . Molecular mechanisms of phagosome formation[J]. Microbiol Spectr, 2016,4(3). DOI: 10.1128/microbiolspec.MCHD-0013-2015 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Amiel E , Nicholson-Dykstra S , Walters JJ ,et al. Scavenger receptor-A functions in phagocytosis of E coli by bone marrow dendritic cells [J]. Exp Cell Res, 2007,313(7):1438-1448. DOI: 10.1016/j.yexcr.2007.02.011 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Schulz O , Hanc P , Böttcher JP ,et al. Myosin II synergizes with F-actin to promote DNGR-1-dependent cross-presentation of dead cell-associated antigens[J]. Cell Rep, 2018,24(2):419-428. DOI: 10.1016/j.celrep.2018.06.038 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Pradhan G , Raj Abraham P , Shrivastava R ,et al. Calcium signaling commands phagosome maturation process[J]. Int Rev Immunol, 2019,38(2):57-69. DOI: 10.1080/08830185.2019.1592169 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
赵舒祺刘靖华. Rab蛋白在吞噬体成熟中的作用[J]. 医学分子生物学杂志 2017,14(6):360-364. DOI: 10.3870/j.issn.1672-8009.2017.06.010 .
返回引文位置Google Scholar
百度学术
万方数据
Zhao SQ , Liu JH . Role of rab GTPases in phagosome maturation[J]. Journal of Medical Molecular Biology, 2017,14(6):360-364. DOI: 10.3870/j.issn.1672-8009.2017.06.010 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[10]
Ye XX , Zhu MM , Che XH ,et al. Lipopolysaccharide induces neuroinflammation in microglia by activating the MTOR pathway and downregulating Vps34 to inhibit autophagosome formation[J]. J Neuroinflammation, 2020,17(1):18. DOI: 10.1186/s12974-019-1644-8 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Liu JC , Li MJ , Li L ,et al. Ubiquitination of the PI3-kinase VPS-34 promotes VPS-34 stability and phagosome maturation[J]. J Cell Biol, 2018,217(1):347-360. DOI: 10.1083/jcb.201705116 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Reinicke AT , Raczkowski F , Mühlig M ,et al. Deubiquitinating enzyme UCH-L1 promotes dendritic cell antigen cross-presentation by favoring recycling of MHC class I molecules[J]. J Immunol, 2019,203(7):1730-1742. DOI: 10.4049/jimmunol.1801133 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Kwon M , Jang M , Kim GH ,et al. Kushenol E inhibits autophagy and impairs lysosomal positioning via VCP/p97 inhibition[J]. Biochem Pharmacol, 2020,175:113861. DOI: 10.1016/j.bcp.2020.113861 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
朱君瑶翟永贞. 细胞自噬调节免疫细胞分化的研究进展[J]. 中华微生物学和免疫学杂志 2020,40(4):305-310. DOI: 10.3760/cma.j.cn112309-20190727-00230 .
返回引文位置Google Scholar
百度学术
万方数据
Zhu JY , Zhai YZ . Research progress on autophagy regulating immune cell differentiation[J]. Chin J Microbiol Immunol, 2020,40(4):305-310. DOI: 10.3760/cma.j.cn112309-20190727-00230 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[15]
丁磊曹萌王立新. 细胞自噬参与蛋白降解及抗原提呈的研究进展[J]. 国际免疫学杂志 2009,32(3):180-183. DOI: 10.3760/cma.j.issn.1673-4394.2009.03.005 .
返回引文位置Google Scholar
百度学术
万方数据
Ding L , Cao M , Wang LX . Research progress of autophagy involved in protein degradation and antigen presentation[J]. IntJ Immunol, 2009,32(3):180-183. DOI: 10.3760/cma.j.issn.1673-4394.2009.03.005 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[16]
Ewanchuk BW , Yates RM . The phagosome and redox control of antigen processing[J]. Free Radic Biol Med, 2018,125:53-61. DOI: 10.1016/j.freeradbiomed.2018.03.040 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Sedlyarov V , Eichner R , Girardi E ,et al. The bicarbonate transporter SLC4A7 plays a key role in macrophage phagosome acidification[J]. Cell Host Microbe, 2018,23(6):766-774.e5. DOI: 10.1016/j.chom.2018.04.013 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Buckley CM , Heath VL , Guého A ,et al. PIKfyve/Fab1 is required for efficient V-ATPase and hydrolase delivery to phagosomes, phagosomal killing, and restriction of Legionella infection[J]. PLoS Pathog, 2019,15(2):e1007551. DOI: 10.1371/journal.ppat.1007551 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Colbert JD , Cruz FM , Rock KL . Cross-presentation of exogenous antigens on MHC I molecules[J]. Curr Opin Immunol, 2020,64:1-8. DOI: 10.1016/j.coi.2019.12.005 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Allan ER , Tailor P , Balce DR ,et al. NADPH oxidase modifies patterns of MHC classⅠ-restricted epitopic repertoires through redox control of antigen processing[J]. J Immunol, 2014,192(11):4989-5001. DOI: 10.4049/jimmunol.1302896 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Yang M , Haase C , Viljanen J ,et al. Cutting edge: processing of oxidized peptides in macrophages regulates T cell activation and development of autoimmune arthritis[J]. J Immunol, 2017,199(12):3937-3942. DOI: 10.4049/jimmunol.1700774 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Haas A . The phagosome: compartment with a license to kill[J]. Traffic, 2007,8(4):311-330. DOI: 10.1111/j.1600-0854.2006.00531.x .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Dickerhof N , Huang J , Min E ,et al. Myeloperoxidase inhibition decreases morbidity and oxidative stress in mice with cystic fibrosis-like lung inflammation[J]. Free Radic Biol Med, 2020,152:91-99. DOI: 10.1016/j.freeradbiomed.2020.03.001 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Zeng XZ , Ren HL , Zhu Y ,et al. Gp91phox (NOX2) in activated microglia exacerbates neuronal damage Induced by oxygen glucose deprivation and hyperglycemia in an in vitro model[J]. Cell Physiol Biochem, 2018,50(2):783-797. DOI: 10.1159/000494243 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
胡悦霍少娟曾晓丽. 肌动蛋白相关蛋白2/3复合体在慢性阻塞性肺疾病小鼠肺泡巨噬细胞吞噬功能中的作用[J]. 中华医学杂志 2019,99(30):2355-2361. DOI: 10.3760/cma.j.issn.0376-2491.2019.30.007 .
返回引文位置Google Scholar
百度学术
万方数据
Hu Y , Huo SJ , Zeng XL ,et al. Effect of actin-related protein 2-3 complex on phagocytosis defect of alveolar macrophages in a mouse model of chronic obstructive pulmonary disease[J]. Chin Med J, 2019,99(30):2355-2361. DOI: 10.3760/cma.j.issn.0376-2491.2019.30.007 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[26]
陈旭刘英王铭. 单核-巨噬细胞和中性粒细胞抗问号钩端螺旋体感染能力及吞噬溶酶体形成差异性研究[J]. 中华微生物学和免疫学杂志 2019,39(2):100-105. DOI: 10.3760/cma.j.issn.0254-5101.2019.02.004 .
返回引文位置Google Scholar
百度学术
万方数据
Chen X , Liu Y , Wang M ,et al. Differences in engulfing ability and phagolysosome formation between mononuclear-macrophages and neutrophils during Leptospira interrogans infection [J]. Chin J Microbiol Immunol, 2019,39(2):100-105. DOI: 10.3760/cma.j.issn.0254-5101.2019.02.004 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[27]
Xue DF , Pan ST , Zhou XM ,et al. Plumbagin enhances the anticancer efficacy of cisplatin by increasing intracellular ROS in human tongue squamous cell carcinoma[J]. Oxid Med Cell Longev, 2020:5649174. DOI: 10.1155/2020/5649174 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Yates RM , Hermetter A , Taylor GA ,et al. Macrophage activation downregulates the degradative capacity of the phagosome[J]. Traffic, 2007,8(3):241-250. DOI: 10.1111/j.1600-0854.2006.00528.x .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Lee WB , Yan JJ , Kang JS ,et al. Macrophage C-type lectin is essential for phagosome maturation and acidification during Escherichia coli-induced peritonitis [J]. Biochem Biophys Res Commun, 2017,493(4):1491-1497. DOI: 10.1016/j.bbrc.2017.10.018 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Mukherjee K , Khatua B , Mandal C . Sialic acid-siglec-E interactions during Pseudomonas aeruginosa infection of macrophages interferes with phagosome maturation by altering intracellular calcium concentrations [J]. Front Immunol, 2020,11:332. DOI: 10.3389/fimmu.2020.00332 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Santarino IB , Vieira OV . Maturation of phagosomes containing different erythrophagocytic particles in primary macrophages[J]. FEBS Open Bio, 2017,7(9):1281-1290. DOI: 10.1002/2211-5463.12262 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Zhao SQ , Xi DL , Cai JW ,et al. Rab20 is critical for bacterial lipoprotein tolerization-enhanced bactericidal activity in macrophages during bacterial infection[J]. Sci China Life Sci, 2020, (3):401-409. DOI: 10.1007/s11427-019-9527-3 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
韩孟伊陈冰霞张杰森. 伯氏疟原虫感染小鼠巨噬细胞、树突状细胞及其表面分子的变化[J]. 中国热带医学 2020,20(4):330-334. DOI: 10.13604/j.cnki.46-1064/r.2020.04.07 .
返回引文位置Google Scholar
百度学术
万方数据
Han MY , Chen BX , Zhang JS ,et al. Changes of macrophages, dendritic cells and surface molecules in mice infected with Plasmodium berghei [J]. China Tropical Medicine, 2020,20(4):330-334. DOI: 10.13604/j.cnki.46-1064/r.2020.04.07 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[34]
Geissmann F , Manz MG , Jung S ,et al. Development of monocytes, macrophages, and dendritic cells[J]. Science, 2010,327(5966):656-661. DOI: 10.1126/science.1178331 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Ou PJ , Wen LF , Liu XL ,et al. Thioesterase PPT1 balances viral resistance and efficient T cell crosspriming in dendritic cells[J]. J Exp Med, 2019,216(9):2091-2112. DOI: 10.1084/jem.20190041 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Ho NI , Camps MGM , De Haas EFE ,et al. Sustained cross-presentation capacity of murine splenic dendritic cell subsets in vivo [J]. Eur J Immunol, 2018,48(7):1164-1173. DOI: 10.1002/eji.201747372 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Van Kooyk Y , Geijtenbeek TB . DC-SIGN: escape mechanism for pathogens[J]. Nat Rev Immunol, 2003,3(9):697-709. DOI: 10.1038/nri1182 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Ho NI , Huis in ′t Veld LM , Raaijmakers TK ,et al. Adjuvants enhancing cross-presentation by dendritic cells: the key to more effective vaccines[J]. Front Immunol, 2018,9:2874. DOI: 10.3389/fimmu.2018.02874 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
Giodini A , Rahner C , Cresswell P . Receptor-mediated phagocytosis elicits cross-presentation in nonprofessional antigen-presenting cells[J]. Proc Natl Acad Sci USA, 2009,106(9):3324-3329. DOI: 10.1073/pnas.0813305106 .
返回引文位置Google Scholar
百度学术
万方数据
[40]
Platzer B , Elpek KG , Cremasco V ,et al. IgE/FcεRI-mediated antigen cross-presentation by dendritic cells enhances anti-tumor immune responses[J]. Cell Rep, 2015,10(9):1487-1495. DOI: 10.1016/j.celrep.2015.02.015 .
返回引文位置Google Scholar
百度学术
万方数据
[41]
Alloatti A , Kotsias F , Pauwels AM ,et al. Toll-like receptor 4 engagement on dendritic cells restrains phago-lysosome fusion and promotes cross-presentation of antigens[J]. Immunity, 2015,43(6):1087-1100. DOI: 10.1016/j.immuni.2015.11.006 .
返回引文位置Google Scholar
百度学术
万方数据
[42]
Cebrian I , Croce C , Guerrero NA ,et al. Rab22a controls MHCⅠ intracellular trafficking and antigen cross-presentation by dendritic cells[J]. EMBO Rep, 2016,17(12):1753-1765. DOI: 10.15252/embr.201642358 .
返回引文位置Google Scholar
百度学术
万方数据
[43]
Levin R , Grinstein S , Canton J . The life cycle of phagosomes: formation, maturation, and resolution[J]. Immunol Rev, 2016,273(1):156-179. DOI: 10.1111/imr.12439 .
返回引文位置Google Scholar
百度学术
万方数据
[44]
Keller S , Berghoff K , Kress H . Phagosomal transport depends strongly on phagosome size[J]. Sci Rep, 2017,7(1):17068. DOI: 10.1038/s41598-017-17183-7 .
返回引文位置Google Scholar
百度学术
万方数据
[45]
Ghose P , Rashid A , Insley P ,et al. EFF-1 fusogen promotes phagosome sealing during cell process clearance in Caenorhabditis elegans[J]. Nat Cell Biol, 2018,20(4):393-399. DOI: 10.1038/s41556-018-0068-5 .
返回引文位置Google Scholar
百度学术
万方数据
[46]
Esteve-Rudd J , Hazim RA , Diemer T ,et al. Defective phagosome motility and degradation in cell nonautonomous RPE pathogenesis of a dominant macular degeneration[J]. Proc Natl Acad Sci USA, 2018,115(21):5468-5473. DOI: 10.1073/pnas.1709211115 .
返回引文位置Google Scholar
百度学术
万方数据
[47]
Westman J , Grinstein S , Maxson ME . Revisiting the role of calcium in phagosome formation and maturation[J]. J Leukoc Biol, 2019,106(4):837-851. DOI: 10.1002/JLB.MR1118-444R .
返回引文位置Google Scholar
百度学术
万方数据
[48]
薛婧程愈郝好杰. 间充质干细胞对巨噬细胞免疫调节效应的研究进展[J]. 解放军医学院学报 2018,39(4):353-355. DOI: 103969/j.issn.2095-5227.2018.04.020 .
返回引文位置Google Scholar
百度学术
万方数据
Xue J , Cheng Y , Hao HJ ,et al. Advances in immunoregulatory effects of mesenchymal stem cells on macrophages[J]. Journal of PLA Medical College, 2018,39(4):353-355. DOI: 103969/j.issn.2095-5227.2018.04.020 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[49]
任翱马毅. 模式识别受体树突状细胞相关C型凝集素1在免疫调节中的作用[J]. 中华实验外科杂志 2020,37(2):390-392. DOI: 103760/cma.j.issn.1001-9030.2020.02.057 .
返回引文位置Google Scholar
百度学术
万方数据
Ren A , Ma Y . The role of pattern recognition receptor dendritic cell-related C-type lectin 1 in immune regulation[J]. Chin J Expl Surg, 2020,37(2):390-392. DOI: 103760/cma.j.issn.1001-9030.2020.02.057 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[50]
Chefalo PJ , Harding CV . Processing of exogenous antigens for presentation by class I MHC molecules involves post-Golgi peptide exchange influenced by peptide-MHC complex stability and acidic pH[J]. J Immunol, 2001,167(3):1274-1282. DOI: 10.4049/jimmunol.167.3.1274 .
返回引文位置Google Scholar
百度学术
万方数据
[51]
Savina A , Jancic C , Hugues S ,et al. NOX2 controls phagosomal pH to regulate antigen processing during crosspresentation by dendritic cells[J]. Cell, 2006,126(1):205-218. DOI: 10.1016/j.cell.2006.05.035 .
返回引文位置Google Scholar
百度学术
万方数据
[52]
Wu XZ , Gowda NM , Gowda DC . Phagosomal acidification prevents macrophage inflammatory cytokine production to malaria, and dendritic cells are the major source at the early stages of infection: implication for malaria protective immunity development[J]. J Biol Chem, 2015,290(38):23135-23147. DOI: 10.1074/jbc.M115.671065 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
李金耀,Email: nc.defudabe.ujxujxyjl,电话:0991-8582500
B
所有作者均声明不存在利益冲突
C
国家自然科学基金 (U1803381)
新疆维吾尔自治区自然科学基金 (2017D1C048)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号