综述
ENGLISH ABSTRACT
反义寡核苷酸技术在遗传性视网膜变性治疗中的应用
李五一
睢瑞芳 [综述]
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20210128-00074
Application of antisense oligonucleotide in the treatment of inherited retinal dystrophy
Li Wuyi
Sui Ruifang
Authors Info & Affiliations
Li Wuyi
Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
Sui Ruifang
Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
·
DOI: 10.3760/cma.j.cn115989-20210128-00074
736
45
0
0
1
0
PDF下载
APP内阅读
摘要

遗传性视网膜变性在临床上缺乏有效的治疗手段,基因治疗有望从根本上恢复遗传物质的功能,为其提供新的治疗策略。反义寡核苷酸(AON)是一种小分子核酸类药物,可以通过碱基互补配对原则与信使RNA特异性结合,从而在转录和翻译水平干扰或恢复基因表达。AON具有特异性高、微量高效、靶向范围广、免疫原性低、毒性及不良反应小等优势,成为遗传性眼病治疗新手段。目前,已有3种不同的AON药物进入了遗传性视网膜变性疾病的临床试验阶段。本文就近年来AON在其化学结构修饰、特性和作用机制等方面的进展及其目前在不同遗传性视网膜变性疾病中应用的治疗策略进行综述。

反义寡核苷酸;基因治疗;视网膜变性,遗传性
ABSTRACT

Gene therapy is expected to restore the function of genetic material fundamentally and it has become a new trend in inherited retinal dystrophy treatment.Antisense oligonucleotide (AON) is a kind of small molecule nucleic acid drug, which can specifically bind to messenger RNA through the base pairing principle, thus interfering or modifying gene expression at the transcription and translation level.Possessing the advantages of high specificity and efficiency, wide targeting range, low immunogenicity and limited adverse effect, AON has become a novel remedy for inherited retinal dystrophy.Currently, three different AON drugs have already been used in clinical trials for inherited retinal dystrophy.In this review, the chemical structure modification, properties and mechanism of AON, and the therapeutic strategies of AON in different inherited retinal dystrophy diseases in recent years were summarized.

Oligonucleotides, antisense;Genetic therapy;Retinal dystrophies, inherited
Sui Ruifang, Email: mocdef.3ab61iusfrh
引用本文

李五一,睢瑞芳. 反义寡核苷酸技术在遗传性视网膜变性治疗中的应用[J]. 中华实验眼科杂志,2022,40(01):67-72.

DOI:10.3760/cma.j.cn115989-20210128-00074

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
本文评分
5 [累计1个]
长期以来,遗传性视网膜变性缺乏有效的临床治疗手段。近20年中,以腺相关病毒(adeno-associated virus,AAV)和慢病毒为载体的基因增补策略在遗传性视网膜变性治疗研究中已取得重大进展,为遗传性视网膜变性治疗带来了希望,但由于载体的负载基因长度存在局限性,使其难以广泛应用。反义寡核苷酸(antisense oligonucleotide,AON)是一种通过碱基互补配对原则结合并降解靶信使RNA(messenger RNA,mRNA)以纠正或抑制其转录与翻译的小分子化合物。AON具有特异性高、微量高效、免疫原性低、毒性及不良反应小、应用范围广等优点,可以有效地填补遗传性视网膜变性基因治疗的空白。AON已在遗传性视网膜变性和视神经萎缩等眼部疾病治疗研究中取得了一定的进展,本文就近年来AON在其化学结构修饰、特性和作用机制等方面的进展及其在不同遗传性视网膜变性疾病中应用的治疗策略进行综述。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Skoblov MY . Prospects of antisense therapy technologies[J]Mol Biol 200943(6)∶917-929. DOI: 10.1134/s0026893309060028 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Crooke ST . Molecular mechanisms of antisense oligonucleotides[J]Nucleic Acid Ther 201727(2)∶70-77. DOI: 10.1089/nat.2016.0656 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Wu H Lima WF Zhang H et al. Determination of the role of the human RNase H1 in the pharmacology of DNA-like antisense drugs[J/OL]J Biol Chem 2004279(17)∶17181-17189[2021-01-10]http://www.ncbi.nlm.nih.gov/pubmed/14960586. DOI: 10.1074/jbc.M311683200 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Mansoor M Melendez AJ . Advances in antisense oligonucleotide development for target identification,validation,and as novel therapeutics[J]Gene Regul Syst Bio 20082275-295. DOI: 10.4137/grsb.s418 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Dean NM Bennett CF . Antisense oligonucleotide-based therapeutics for cancer[J]Oncogene 200322(56)∶9087-9096. DOI: 10.1038/sj.onc.1207231 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Opalinska JB Gewirtz AM . Nucleic-acid therapeutics:basic principles and recent applications[J]Nat Rev Drug Discov 20021(7)∶503-514. DOI: 10.1038/nrd837 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Crooke ST . Molecular mechanisms of action of antisense drugs[J]Biochim Biophys Acta 19991489(1)∶31-44. DOI: 10.1016/s0167-4781(99)00148-7 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Lee Y Rio DC . Mechanisms and regulation of alternative pre-mRNA splicing[J]Annu Rev Biochem 201584291-323. DOI: 10.1146/annurev-biochem-060614-034316 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Li D Mastaglia FL Fletcher S et al. Precision medicine through antisense oligonucleotide-mediated exon skipping[J]Trends Pharmacol Sci 201839(11)∶982-994. DOI: 10.1016/j.tips.2018.09.001 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Echevarría L Aupy P Goyenvalle A Exon-skipping advances for Duchenne muscular dystrophy[J]Hum Mol Genet 201827(R2)∶R163-R172. DOI: 10.1093/hmg/ddy171 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Dias N Stein CA . Antisense oligonucleotides:basic concepts and mechanisms[J]Mol Cancer Ther 20021(5)∶347-355.
返回引文位置Google Scholar
百度学术
万方数据
[12]
Rahman SM Baba T Kodama T et al. Hybridizing ability and nuclease resistance profile of backbone modified cationic phosphorothioate oligonucleotides[J]Bioorg Med Chem 201220(13)∶4098-4102. DOI: 10.1016/j.bmc.2012.05.009 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Frey PA Sammons RD . Bond order and charge localization in nucleoside phosphorothioates[J]Science 1985228(4699)∶541-545. DOI: 10.1126/science.2984773 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Watanabe TA Geary RS Levin AA . Plasma protein binding of an antisense oligonucleotide targeting human ICAM-1 (ISIS 2302)[J]Oligonucleotides 200616(2)∶169-180. DOI: 10.1089/oli.2006.16.169 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Juliano RL Ming X Nakagawa O The chemistry and biology of oligonucleotide conjugates[J]Acc Chem Res 201245(7)∶1067-1076. DOI: 10.1021/ar2002123 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Frieden M Christensen SM Mikkelsen ND et al. Expanding the design horizon of antisense oligonucleotides with alpha-L-LNA[J]Nucleic Acids Res 200331(21)∶6365-6372. DOI: 10.1093/nar/gkg820 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Monia BP Lesnik EA Gonzalez C et al. Evaluation of 2'-modified oligonucleotides containing 2'-deoxy gaps as antisense inhibitors of gene expression[J/OL]J of Biol Chem 1993268(19)∶14514-14522[2021-01-16]https://www.jbc.org/article/S0021-9258(19)85268-7/pdf. DOI: 10.1016/s0021-9258(19)85268-7 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Swayze EE Siwkowski AM Wancewicz EV et al. Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals[J]Nucleic Acids Res 200735(2)∶687-700. DOI: 10.1093/nar/gkl1071 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Baker BF Lot SS Condon TP et al. 2'-O-(2-methoxy)ethyl-modified anti-intercellular adhesion molecule 1 (ICAM-1) oligonucleotides selectively increase the ICAM-1 mRNA level and inhibit formation of the ICAM-1 translation initiation complex in human umbilical vein endothelial cells[J/OL]J Biol Chem 1997272(18)∶11994-12000[2021-01-16]http://www.ncbi.nlm.nih.gov/pubmed/9115264. DOI: 10.1074/jbc.272.18.11994 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
ProQR announces first patient dosed in phase 1/2 Aurora trial of QR-1123 for autosomal dominant retinitis pigmentosa[EB/OL]. 2020-12-11[2021-01-16]https://www.proqr.com/press-releases/proqr-announces-first-patient-dosed-in-phase-12-aurora-trial-of-qr-1123-for.
[21]
Roduit R Escher P Schorderet DF . Mutations in the DNA-binding domain of NR2E3 affect in vivo dimerization and interaction with CRX [J/OL]PLoS One 20094(10)∶e7379[2021-01-16]http://www.ncbi.nlm.nih.gov/pubmed/19823680. DOI: 10.1371/journal.pone.0007379 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Wang L Kempton JB Jiang H et al. Fetal antisense oligonucleotide therapy for congenital deafness and vestibular dysfunction[J]Nucleic Acids Res 202048(9)∶5065-5080. DOI: 10.1093/nar/gkaa194 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Slijkerman RW Vaché C Dona M et al. Antisense oligonucleotide-based splice correction for USH2A-associated retinal degeneration caused by a frequent deep-intronic mutation [J/OL]Mol Ther Nucleic Acids 20165(10)∶e381[2021-01-16]http://www.ncbi.nlm.nih.gov/pubmed/27802265. DOI: 10.1038/mtna.2016.89 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
ProQR announces positive findings from an interim analysis in the phase 1/2 trial of QR-421a for Usher syndrome and provides business update[EB/OL]. 2020-03-31[2021-02-20]https://www.proqr.com/press-releases/proqr-announces-positive-findings-from-an-interim-analysis-in-the-phase-12-trial-of.
[25]
Albert S Garanto A Sangermano R et al. Identification and rescue of splice defects caused by two neighboring deep-intronic ABCA4 mutations underlying stargardt disease [J]Am J Hum Genet 2018102(4)∶517-527. DOI: 10.1016/j.ajhg.2018.02.008 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
ProQR announces positive top-line results from the phase 1/2 study of sepofarsen in LCA10 patients[EB/OL]. 2019-10-10[2021-02-20]https://www.proqr.com/press-releases/proqr-announces-first-patient-dosed-in-phase-12-aurora-trial-of-qr-1123-for.
[27]
Bonifert T Gonzalez Menendez I Battke F et al. Antisense oligonucleotide mediated splice correction of a deep intronic mutation in OPA1 [J/OL]Mol Ther Nucleic Acids 20165(11)∶e390[2021-02-20]http://www.ncbi.nlm.nih.gov/pubmed/27874857. DOI: 10.1038/mtna.2016.93 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Sullivan LS Bowne SJ Birch DG et al. Prevalence of disease-causing mutations in families with autosomal dominant retinitis pigmentosa:a screen of known genes in 200 families[J]Invest Ophthalmol Vis Sci 200647(7)∶3052-3064. DOI: 10.1167/iovs.05-1443 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Orlans HO Barnard AR MacLaren RE . Dynamic in vivo quantification of rod photoreceptor degeneration using fluorescent reporter mouse models of retinitis pigmentosa [J/OL]Exp Eye Res 2020190107895[2021-02-20]http://www.ncbi.nlm.nih.gov/pubmed/31816293. DOI: 10.1016/j.exer.2019.107895 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Gorbatyuk M Justilien V Liu J et al. Suppression of mouse rhodopsin expression in vivo by AAV mediated siRNA delivery [J]Vision Res 200747(9)∶1202-1208. DOI: 10.1016/j.visres.2006.11.026 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Murray SF Jazayeri A Matthes MT et al. Allele-specific inhibition of rhodopsin with an antisense oligonucleotide slows photoreceptor cell degeneration[J]Invest Ophthalmol Vis Sci 201556(11)∶6362-6375. DOI: 10.1167/iovs.15-16400 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Naessens S Ruysschaert L Lefever S et al. Antisense oligonucleotide-based downregulation of the G56R pathogenic variant causing NR2E3-associated autosomal dominant retinitis pigmentosa [J/OL]Genes (Basel) 201910(5)∶363[2021-02-22]http://www.ncbi.nlm.nih.gov/pubmed/31083481. DOI: 10.3390/genes10050363 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Zhu T Chen DF Wang L et al. USH2A variants in Chinese patients with Usher syndrome type Ⅱ and non-syndromic retinitis pigmentosa[J]Br J Ophthalmol 2021105(5)∶694-703. DOI: 10.1136/bjophthalmol-2019-315786 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Cosgrove D Zallocchi M Usher protein functions in hair cells and photoreceptors[J]Int J Biochem Cell Biol 20144680-89. DOI: 10.1016/j.biocel.2013.11.001 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Dulla K Slijkerman R van Diepen HC et al. Antisense oligonucleotide-based treatment of retinitis pigmentosa caused by USH2A exon 13 mutations[J]Mol Ther 202129(8)∶2441-2455. DOI: 10.1016/j.ymthe.2021.04.024 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
van DiepenH Dulla K Lam CH et al. QR-421a,an antisense oligonucleotide,for the treatment of retinitis pigmentosa due to USH2A exon 13 mutations [J/OL]Invest Ophthalmol Vis Sci 201960(9)∶3250[2021-02-28]https://iovs.arvojournals.org/article.aspx?articleid=2743135.
返回引文位置Google Scholar
百度学术
万方数据
[37]
Lenis TL Hu J Ng SY et al. Expression of ABCA4 in the retinal pigment epithelium and its implications for Stargardt macular degeneration[J/OL]Proc Natl Acad Sci U S A 2018115(47)∶E11120-E11127[2021-02-28]http://www.ncbi.nlm.nih.gov/pubmed/30397118. DOI: 10.1073/pnas.1802519115 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Braun TA Mullins RF Wagner AH et al. Non-exomic and synonymous variants in ABCA4 are an important cause of Stargardt disease [J]Hum Mol Genet 201322(25)∶5136-5145. DOI: 10.1093/hmg/ddt367 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
Sangermano R Garanto A Khan M et al. Deep-intronic ABCA4 variants explain missing heritability in Stargardt disease and allow correction of splice defects by antisense oligonucleotides [J]Genet Med 201921(8)∶1751-1760. DOI: 10.1038/s41436-018-0414-9 .
返回引文位置Google Scholar
百度学术
万方数据
[40]
den Hollander AI Koenekoop RK Yzer S et al. Mutations in the CEP290 ( NPHP6 ) gene are a frequent cause of Leber congenital amaurosis [J]Am J Hum Genet 200679(3)∶556-561. DOI: 10.1086/507318 .
返回引文位置Google Scholar
百度学术
万方数据
[41]
Wheway G Parry DA Johnson CA . The role of primary cilia in the development and disease of the retina[J]Organogenesis 201410(1)∶69-85. DOI: 10.4161/org.26710 .
返回引文位置Google Scholar
百度学术
万方数据
[42]
Dulla K Aguila M Lane A et al. Splice-modulating oligonucleotide QR-110 restores CEP290 mRNA and function in human c.2991+1655A>G LCA10 models [J]Mol Ther Nucleic Acids 201812730-740. DOI: 10.1016/j.omtn.2018.07.010 .
返回引文位置Google Scholar
百度学术
万方数据
[43]
ProQR announces virtual presentation of phase 1/2 sepofarsen data through the Association for Research in Vision and Ophthalmology (ARVO)[EB/OL]. 2020-06-08[2021-04-26]https://www.proqr.com/press-releases/proqr-announces-virtual-presentation-of-phase-12-sepofarsen-data-through-the-association-for-research-in-vision-and-ophthalmology-arvo.
[44]
Artunay O Yuzbasioglu E Rasier R et al. Incidence and management of acute endophthalmitis after intravitreal bevacizumab (Avastin) injection[J]Eye (Lond) 200923(12)∶2187-2193. DOI: 10.1038/eye.2009.7 .
返回引文位置Google Scholar
百度学术
万方数据
[45]
Chi X Gatti P Papoian T Safety of antisense oligonucleotide and siRNA-based therapeutics[J]Drug Discov Today 201722(5)∶823-833. DOI: 10.1016/j.drudis.2017.01.013 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
睢瑞芳,Email: mocdef.3ab61iusfrh
B
所有作者均声明不存在利益冲突
C
国家自然科学基金项目 (82171086)
中国医学科学院医学与健康科技创新工程经费项目 (CIFMS#2021-I2M-1-003)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号