实验研究
ENGLISH ABSTRACT
快速精确获取小鼠角膜神经三维图像及其参数的技术方案研究
傅婷
黄奕嘉
刘俊
李志杰
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20200817-00595
Rapid acquisition of a three-dimensional image of corneal nerve distribution and its various parameters
Fu Ting
Huang Yijia
Liu Jun
Li Zhijie
Authors Info & Affiliations
Fu Ting
International Ocular Surface Research Center & Institute of Ophthalmology, Jinan University Basic Medical School, Guangzhou 510632, China
Huang Yijia
Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
Liu Jun
International Ocular Surface Research Center & Institute of Ophthalmology, Jinan University Basic Medical School, Guangzhou 510632, China
Li Zhijie
International Ocular Surface Research Center & Institute of Ophthalmology, Jinan University Basic Medical School, Guangzhou 510632, China
·
DOI: 10.3760/cma.j.cn115989-20200817-00595
619
49
0
0
1
0
PDF下载
APP内阅读
摘要

目的研究快速、精确获取小鼠角膜神经三维(3D)图像及其参数的技术方案。

方法选取SPF级雌性C57BL/6小鼠4只,吸入过量乙醚麻醉后使小鼠安乐死,立即在解剖显微镜下获取具有完整角膜缘的角膜4个,经过常规固定、透膜和抗β-Ⅲ微管蛋白荧光抗体标记后整铺片处理。在高分辨率去卷积显微镜下采用科学互补性金属氧化物半导体探测器捕获图像,通过显微镜系统自携带图像处理软件对图像进行3D去卷积运算,Z轴数据平面投影以及自动拼接处理得到完整的角膜神经纤维3D图像。采用交互式显微图像分析软件Imaris的丝状追踪模块中的自动检测模式获得不同区域的角膜神经密度,采用自动路径模式手动指定计算起始点到终止点的神经纤维长度。

结果在去卷积显微镜60倍油镜下,可以观察到角膜缘处呈密集网络状的基质层神经纤维在角膜缘附近进入前弹力层,并发出密集的分枝,形成基底下神经丛。这些神经丛向角膜中心伸展形成密集的神经网络样结构,在角膜顶点汇聚成漩涡状结构。少部分神经纤维丛垂直进入上皮层,并发出许多微小的神经末梢分枝。采用Imaris软件丝状物追踪模块中的自动检测模式自动统计,发现角膜神经末梢密度从角膜缘的(2 488.88±282.84)μm/μm 2逐渐增多至角膜中央的(5 766.66±298.55)μm/μm 2;角膜基质神经纤维密度从角膜缘的(40.99±0.99)μm/μm 2递减至角膜中央的(34.57±1.28)μm/μm 2。通过自动路径模式手动测量发现,角膜缘处基质层神经纤维进入前弹力层约151 μm处开始分枝形成基底下神经丛。

结论去卷积显微镜系统可以获得整个角膜神经纤维的3D分布,Imaris图像分析软件可以自动、快速统计待测区域角膜神经纤维的不同参数。

角膜;神经纤维;三维图像;图像处理,计算机辅助;去卷积
ABSTRACT

ObjectiveTo investigate a rapid protocol for the acquisition of a three-dimensional (3D) image of corneal nerve distribution and its various parameters.

MethodsFour SPF female C57BL/6 mice were selected and four corneal samples with complete limbi were obtained using a dissecting microscope after the sacrifice of mice euthanized by ether.After conventional fixation, permeabilization, and immunostaining by an anti-β-Ⅲ tubulin fluorescent-conjugated antibody, a whole-nerve image of the whole-mount cornea was captured under a 60X oil lens using a scientific complementary metal-oxide-semiconductor detector and a high-resolution deconvolution microscope.The 3D image of the corneal nerve fiber was obtained after 3D deconvolution processing, Z-axis data projection, and automatic stitching using the self-contained image processing software of the microscope system.The corneal nerve density in different areas was analyzed using the automatic detection mode in the Filament Tracer module and the manual Autopath module of the interactive microscopic image analysis software Imaris.The use and care of animals complied with the statement of the Association for Research in Visual and Ophthalmology, and the study protocol was approved by an Experimental Animal Welfare Committee of Jinan University (No.JN-A-2002-01).

ResultsIt was found that stromal nerve fibers in a dense network entered the Bowman membrane near the limbus, and branches of stromal nerve fibers formed subbasal nerve plexus, which stretched toward the center of the cornea to form a dense neural network-like structure and converged into a vortex-like structure at the apex of the cornea.Some subbasal nerves entered the epithelial layer vertically and some branches of nerve endings were found.Through the automatic detection mode of Imaris software, a gradual increase of the density from (2 488.88±282.84)μm/μm 2 at the limbus to (5 766.66±298.55)μm/μm 2 at the center of the cornea of the subbasal nerve branches, and a decrease of the density from (40.99±0.99)μm/μm 2 at the limbus to (34.57±1.28)μm/μm 2 at the center of the stromal nerves were found.It was also found that the stromal nerves at the limbus entered the Bowman membrane for about 151 μm and then began to branch to form subbasal nerves.

ConclusionsThe high-resolution deconvolution microscope system can be used to study the 3D distribution of the whole corneal nerve.Additionally, Imaris can be used for obtaining various parameters of the corneal nerves automatically and quickly.

Cornea;Nerve fibers;Imaging, three-dimensional;Image processing, computer-assisted;Deconvolution
Li Zhijie, Email: nc.defudabe.unjileijihzt
引用本文

傅婷,黄奕嘉,刘俊,等. 快速精确获取小鼠角膜神经三维图像及其参数的技术方案研究[J]. 中华实验眼科杂志,2022,40(02):104-109.

DOI:10.3760/cma.j.cn115989-20200817-00595

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
角膜是一种无血管、无淋巴管的透明组织,其屈光力约占整个视觉系统屈光力的2/3。角膜任何结构和功能的改变均可显著影响外界物体在视网膜成像的准确性 [ 1 ]。角膜中分布着大量神经纤维,角膜神经纤维可通过复杂的感觉、瞬目和刺激泪液分泌来维持眼表的自身稳态 [ 2 ]。另外,角膜神经亦可通过释放多种营养因子来调节角膜上皮细胞的分裂和创伤修复以维持角膜上皮层的完整性 [ 3 ]。当角膜神经纤维功能受损时将导致多种眼表疾病,如干眼、角膜神经营养不良、角膜上皮溃疡等,严重者可致盲。此外,角膜神经纤维感觉过敏还可能导致角膜神经性疼痛 [ 4 ]。因此,研究角膜的神经分布和生理特征不仅有利于了解正常的角膜结构和生理功能,而且对于研究神经相关性角膜病的发生机制以及制定相关的防治措施均具有重要意义。鉴定角膜神经纤维的方法包括早期经典的神经组织学方法,如氯化金和氯化银染色,以及后来的免疫荧光组织化学方法、采用透射电子显微镜技术对离体角膜神经进行超微结构观察和采用激光扫描共聚焦显微镜对活体角膜神经进行研究等 [ 5 , 6 , 7 , 8 , 9 , 10 , 11 ]。上述方法各有利弊,如角膜组织切片后采用氯化金染色法虽然可以看到角膜上皮神经末梢,但不能对角膜神经进行整体观察;普通光学显微镜分辨率低,难以提供高清神经结构图像。近十年来,本研究团队采用高分辨率去卷积显微镜进行小鼠完整角膜神经纤维图像获取,并结合交互式显微镜图像分析软件Imaris的丝状追踪模块对正常和创伤角膜的神经分布特征及其各种参数进行分析 [ 12 , 13 , 14 , 15 , 16 ]。角膜神经的可视化研究对角膜多种疾病的发病机制和病理学机制的研究具有重要意义。本研究拟探讨获取角膜神经分布和分析参数的实验方法,为相关研究工作提供新的方法学支撑。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
李志杰彭广华李辰眼免疫性疾病[M]郑州河南科学技术出版社 2001213-215.
[2]
Müller LJ Marfurt CF Kruse F et al. Corneal nerves:structure,contents and function[J]Exp Eye Res 200376(5)∶521-542. DOI: 10.1016/s0014-4835(03)00050-2 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Cruzat A Qazi Y Hamrah P In vivo confocal microscopy of corneal nerves in health and disease [J]Ocul Surf 201715(1)∶15-47. DOI: 10.1016/j.jtos.2016.09.004 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Labetoulle M Baudouin C Calonge M et al. Role of corneal nerves i n ocular surface homeostasis and disease [J]Acta Ophthalmol 201997(2)∶137-145. DOI: 10.1111/aos.13844 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Rózsa AJ Guss RB Beuerman RW . Neural remodeling following experimental surgery of the rabbit cornea[J]Invest Ophthalmol Vis Sci 198324(8)∶1033-1051.
返回引文位置Google Scholar
百度学术
万方数据
[6]
He J Bazan NG Bazan HE . Mapping the entire human corneal nerve architecture[J]Exp Eye Res 201091(4)∶513-523. DOI: 10.1016/j.exer.2010.07.007 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Müller LJ Vrensen GF Pels L et al. Architecture of human corneal nerves[J]Invest Ophthalmol Vis Sci 199738(5)∶985-994.
返回引文位置Google Scholar
百度学术
万方数据
[8]
Müller LJ Pels L Vrensen GF . Ultrastructural organization of human corneal nerves[J]Invest Ophthalmol Vis Sci 199637(4)∶476-488.
返回引文位置Google Scholar
百度学术
万方数据
[9]
Tavakoli M Malik RA . Corneal confocal microscopy:a novel non-invasive technique to quantify small fibre pathology in peripheral neuropathies[J/OL]J Vis Exp 2011,(47)∶2194[2021-07-08]https://pubmed.ncbi.nlm.nih.gov/21248693/. DOI: 10.3791/2194 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Kalteniece A Ferdousi M Azmi S et al. Corneal confocal microscopy detects small nerve fibre damage in patients with painful diabetic neuropathy[J/OL]Sci Rep 202010(1)∶3371[2021-07-08]https://pubmed.ncbi.nlm.nih.gov/32099076/. DOI: 10.1038/s41598-020-60422-7 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
于花苗英彬赵少贞糖尿病网膜病变程度与角膜上皮基底神经丛涡状区改变的关系[J]中华实验眼科杂志 202038(9)∶767-772. DOI: 10.3760/cma.j.cn115989-20190618-00269 .
返回引文位置Google Scholar
百度学术
万方数据
Yu H Miao YB Zhao SZ et al. Relationship between degree of diabetic retinopathy and changes of corneal sub-basal nerve plexus in the whorl-like region[J]Chin J Exp Ophthalmol 202038(9)∶767-772. DOI: 10.3760/cma.j.cn115989-20190618-00269 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[12]
Liu J Wu M He J et al. Antibiotic-induced dysbiosis of gut microbiota impairs corneal nerve regeneration by affecting CCR2-negative macrophage distribution[J]Am J Pathol 2018188(12)∶2786-2799. DOI: 10.1016/j.ajpath.2018.08.009 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Wang H Xiao C Dong D et al. Epothilone B speeds corneal nerve regrowth and functional recovery through microtubule stabilization and increased nerve beading[J/OL]Sci Rep 20188(1)∶2647[2021-07-10]https://pubmed.ncbi.nlm.nih.gov/29422528/. DOI: 10.1038/s41598-018-20734-1 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Wu M Liu J Li F et al. Antibiotic-induced dysbiosis of gut microbiota impairs corneal development in postnatal mice by affecting CCR2 negative macrophage distribution[J]Mucosal Immunol 202013(1)∶47-63. DOI: 10.1038/s41385-019-0193-x .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Liu J Fu T Song F et al. Mast cells participate in corneal development in mice[J/OL]Sci Rep 2015517569[2021-07-10]https://pubmed.ncbi.nlm.nih.gov/26627131/. DOI: 10.1038/srep17569 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Wang C Fu T Xia C et al. Changes in mouse corneal epithelial innervation with age[J]Invest Ophthalmol Vis Sci 201253(8)∶5077-5084. DOI: 10.1167/iovs.12-9704 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Xiao C Wu M Liu J et al. Acute tobacco smoke exposure exacerbates the inflammatory response to corneal wounds in mice via the sympathetic nervous system[J/OL]Commun Biol 2019233[2021-07-12]https://pubmed.ncbi.nlm.nih.gov/30701198/. DOI: 10.1038/s42003-018-0270-9 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Shaheen BS Bakir M Jain S Corneal nerves in health and disease[J]Surv Ophthalmol 201459(3)∶263-285. DOI: 10.1016/j.survophthal.2013.09.002 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Patrón LA Zinsmaier KE . Mitochondria on the road to power axonal regeneration[J]Neuron 201692(6)∶1152-1154. DOI: 10.1016/j.neuron.2016.12.007 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Reid TW Murphy CJ Iwahashi CK et al. Stimulation of epithelial cell growth by the neuropeptide substance P[J]J Cell Biochem 199352(4)∶476-485. DOI: 10.1002/jcb.240520411 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Li Z Burns AR Han L et al. IL-17 and VEGF are necessary for efficient corneal nerve regeneration[J]Am J Pathol 2011178(3)∶1106-1116. DOI: 10.1016/j.ajpath.2010.12.001 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
李志杰,Email: nc.defudabe.unjileijihzt
B

傅婷:文章选题及撰写、实验研究、分析数据;黄奕嘉:实验研究、分析数据;刘俊:论文修改;李志杰:文章选题及撰写

C
所有作者均声明不存在任何利益冲突
D
国家自然科学基金项目 (81770962、81470603)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号