临床研究
ENGLISH ABSTRACT
自适应光学视觉模拟仪验光与传统验光的一致性研究
周桂梅
谭青青
廖萱
钱玖林
兰长骏
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20200526-00375
Agreement evaluation between adaptive optics visual simulator and conventional refraction methods
Zhou Guimei
Tan Qingqing
Liao Xuan
Qian Jiulin
Lan Changjun
Authors Info & Affiliations
Zhou Guimei
Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Medical School of Ophthalmology & Optometry, North Sichuan Medical College, Nanchong 637000, China
Tan Qingqing
Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Medical School of Ophthalmology & Optometry, North Sichuan Medical College, Nanchong 637000, China
Liao Xuan
Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Medical School of Ophthalmology & Optometry, North Sichuan Medical College, Nanchong 637000, China
Qian Jiulin
Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Medical School of Ophthalmology & Optometry, North Sichuan Medical College, Nanchong 637000, China
Lan Changjun
Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Medical School of Ophthalmology & Optometry, North Sichuan Medical College, Nanchong 637000, China
·
DOI: 10.3760/cma.j.cn115989-20200526-00375
0
0
0
0
0
0
PDF下载
APP内阅读
摘要

目的评价睫状肌麻痹状态下自适应光学视觉模拟仪(VAO)与传统主客观验光的差异性及一致性。

方法采用诊断性试验研究方法,于2019年11月在川北医学院附属医院纳入健康受试者31例31眼,其中男15例15眼,女16例16眼;平均年龄(20.1±1.0)岁;均取右眼为受检眼。睫状肌麻痹状态下分别采用VAO和传统主客观验光方法对受试者进行验光,记录球镜度、柱镜度以及矢量散光度J 0和J 45。采用配对 t检验比较不同验光方法验光值差异,采用组内相关系数(ICC)和Bland-Altman图评价2种验光方法的一致性。

结果VAO主觉验光和综合验光仪主觉验光测得的球镜度、柱镜度、J 0和J 45的ICC分别为0.97、0.75、0.84和0.09。VAO和电脑验光仪客观验光测得的球镜度、柱镜度、J 0和J 45的ICC分别为0.98、0.70、0.74和0.61。VAO主觉验光与综合验光仪主觉验光方法测得的球镜度、柱镜度、J 0和J 45差值分别为(0.05±0.32)、(-0.23±0.28)、(-0.10±0.14)和(-0.04±0.16)D,其中2种主觉验光方法测量的柱镜度和J 0比较,差异均有统计学意义(均 P<0.01),球镜度和J 45比较,差异均无统计学意义( P=0.41、0.18);VAO与电脑验光仪客观验光测得的球镜度、柱镜度、J 0和J 45的差值分别为(-0.70±0.26)、(-0.07±0.46)、(-0.03±0.27)和(0.01±0.12)D,其中VAO客观验光测量的球镜度较电脑验光仪明显偏负,差异有统计学意义( t=15.09, P<0.01),2种客观验光方法测量的柱镜度、J 0和J 45比较差异均无统计学意义( P=0.39、0.59、0.63)。2种客观验光方法测量的球镜度、柱镜度、J 0和J 45与综合验光仪主觉验光相应值的差值比较差异均无统计学意义(均 P>0.05)。

结论睫状肌麻痹状态下,VAO客观验光测量的球镜度与电脑验光仪相比更偏负;但VAO与综合验光仪主觉验光测得的球镜度和散光矢量值均具有较好的一致性,且测量差值临床可以接受。

验光;自适应光学视觉模拟仪;睫状肌麻痹;一致性
ABSTRACT

ObjectiveTo evaluate the difference and agreement of cycloplegic refraction between adaptive optics visual simulator (VAO) and conventional refraction methods.

MethodsA diagnostic test study was conducted.Thirty-one eyes of 31 healthy subjects including 15 males and 16 females were enrolled in November, 2019 in Affiliated Hospital of North Sichuan Medical College.Mean age of the subjects was (20.1±1.0) years, and the right eye was taken for data analysis.Cycloplegic refraction was measured by VAO and conventional refraction methods, respectively.Spherical power, cylindrical power, Jackson cross-cylinder power at axis 90° and 180° (J 0) and Jackson cross-cylinder power at axis 45° and 135° (J 45) vector powers were recorded.Paired t-test was used to compare the refractive parameters between different refraction methods, and the intraclass correlation coefficient (ICC) and Bland-Altman plots were used to evaluate the agreement between VAO and conventional refraction methods.This study adhered to the Declaration of Helsinki, and the research protocal was approved by an Ethics Committee of Affiliated Hospital of North Sichuan Medical College (No.2020ER[A]018). Written informed consent was obtained from each subject prior to any medical examination.

ResultsFor subjective refraction, the ICC for spherical power, cylindrical power, J 0 and J 45 between VAO and phoropter were 0.97, 0.75, 0.84 and 0.09, respectively.For objective refraction, the ICC for spherical power, cylindrical power, J 0 and J 45 between VAO and autorefractor were 0.98, 0.70, 0.74 and 0.61, respectively.The mean differences in spherical power, cylindrical power, J 0 and J 45 between VAO and phoropter were (0.05±0.32), (-0.23±0.28), (-0.10±0.14) and (-0.04±0.16)D, respectively, and the differences in cylindrical power and J 0 were statistically significant (both at P<0.01), whereas no significant differences in spherical power and J 45 were found ( P=0.41, 0.18). The mean differences in spherical power, cylindrical power, J 0 and J 45 measured by VAO and autorefractor were (-0.70±0.26), (-0.07±0.46), (-0.03±0.27) and (0.01±0.12)D, respectively, and the spherical power measurement by VAO was significantly more negative than the autorefractor ( t=15.09, P<0.01), while no significant differences in cylindrical power, J 0 and J 45 were found ( P=0.39, 0.59, 0.63). No significant difference values in spherical power, cylindrical power, J 0 and J 45 were found between the two objective refraction methods and phoropter subjective refraction (all at P>0.05).

ConclusionsWith cycloplegia, spherical power obtained by VAO objective refraction is more negative compared with autorefractor.There is a good agreement of spherical power and astigmatism vector values measured by VAO and phoropter subjective refraction, and the measurement differences are clinically acceptable.

Optometry;Adaptive optics visual simulator;Cycloplegia;Agreement
Lan Changjun, Email: mocdef.aabnisnujgnahcnal
引用本文

周桂梅,谭青青,廖萱,等. 自适应光学视觉模拟仪验光与传统验光的一致性研究[J]. 中华实验眼科杂志,2022,40(03):241-246.

DOI:10.3760/cma.j.cn115989-20200526-00375

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
屈光不正是儿童和青少年视力下降的主要原因,近视是常见的屈光不正类型。近年来,我国儿童和青少年近视患病率逐年升高,且逐渐呈低龄化趋势 [ 1 ]。预计至2050年全球将有47.58亿人患有近视,约占总人口的50% [ 2 , 3 ]。未矫正的屈光不正严重影响学习和生活,准确测量屈光度并确定最佳矫正处方是屈光不正矫正的关键 [ 4 , 5 ]。目前临床上广泛应用的传统验光方法仍然是以检影验光或电脑客观验光作为初始屈光度数参考,结合综合验光仪或直接插片的主觉验光。最近面世的自适应光学视觉模拟器(adaptive optics visual simulator,VAO)结合了像差测量和自适应光学技术,通过Hartmann-Shack波前传感器测量像差,并将测得的低阶像差数据转换为客观屈光度值,为主觉验光提供起始屈光度数 [ 6 , 7 , 8 ];主觉验光模块则由自适应空间光学调制器实现 [ 9 , 10 , 11 ],该调制器内置的50万片静电压控的超微晶体通过彼此间相对位置的变化改变光线路径,从而模拟球镜、柱镜等光学透镜,检查者则可以通过软件交互界面实现球镜或柱镜的改变,从而检查患者的主觉屈光度 [ 12 , 13 , 14 , 15 ]。目前VAO相关临床研究较少,其临床应用价值仍不十分明确。本研究拟对睫状肌麻痹状态下VAO与传统主客观验光结果的一致性及差异性进行分析,并比较2种方法的主客观验光误差值,以评估VAO主客观验光临床应用的可行性。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Wang SK Guo Y Liao C et al. Incidence of and factors associated with myopia and high myopia in Chinese children,based on refraction without cycloplegia[J]JAMA Ophthalmol 2018136(9)∶1017-1024. DOI: 10.1001/jamaophthalmol.2018.2658 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Pan CW Chen X Gong Y et al. Prevalence and causes of reduced visual acuity among children aged three to six years in a metropolis in China[J]Ophthalmic Physiol Opt 201636(2)∶152-157. DOI: 10.1111/opo.12249 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Holden BA Fricke TR Wilson DA et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[J]Ophthalmology 2016123(5)∶1036-1042. DOI: 10.1016/j.ophtha.2016.01.006 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Kumaran SE Balasubramaniam SM Kumar DS et al. Refractive error and vision-related quality of life in South Indian children[J]Optom Vis Sci 201592(3)∶272-278. DOI: 10.1097/OPX.0000000000000494 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Kandel H Khadka J Goggin M et al. Impact of refractive error on quality of life:a qualitative study[J]Clin Exp Ophthalmol 201745(7)∶677-688. DOI: 10.1111/ceo.12954 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Vohnsen B Carmichael Martins A Qaysi S et al. Hartmann-Shack wavefront sensing without a lenslet array using a digital micromirror device[J/OL]Appl Opt 201857(22)∶E199-E204[2021-04-23]https://pubmed.ncbi.nlm.nih.gov/30117885/. DOI: 10.1364/AO.57.00E199 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
戴云肖飞赵军磊自适应光学人眼像差调控及其应用[J]光电工程 201845(3)∶170703. DOI: 10.12086/oee.2018.170703 .
返回引文位置Google Scholar
百度学术
万方数据
Dai Y Xiao F Zhao JL et al. Ocular aberrations manipulation with adaptive optics and its application[J]Opto-Electron Eng 201845(3)∶170703. DOI: 10.12086/oee.2018.170703 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[8]
Battu R Dabir S Khanna A et al. Adaptive optics imaging of the retina[J]Indian J Ophthalmol 201462(1)∶60-65. DOI: 10.4103/0301-4738.126185 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Hervella L Villegas EA Prieto PM et al. Assessment of subjective refraction with a clinical adaptive optics visual simulator[J]J Cataract Refract Surg 201945(1)∶87-93. DOI: 10.1016/j.jcrs.2018.08.022 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
林政桦陈兆高文钰一款新型主客观验光一体化设备的临床评估[J]中华眼视光学与视觉科学杂志 201921(12)∶888-894. DOI: 10.3760/cma.j.issn.1674-845X.2019.12.002 .
返回引文位置Google Scholar
百度学术
万方数据
Lin ZH Chen Z Gao WY et al. Accuracy and efficiency of refraction for myopes based on the visual adaptive optics simulator[J]Chin J Optom Ophthalmol Vis Sci 201921(12)∶888-894. DOI: 10.3760/cma.j.issn.1674-845X.2019.12.002 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[11]
Prieto P Fernández E Manzanera S et al. Adaptive optics with a programmable phase modulator:applications in the human eye[J]Opt Express 200412(17)∶4059-4071. DOI: 10.1364/opex.12.004059 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Fernández EJ Manzanera S Piers P et al. Adaptive optics visual simulator[J]J Refract Surg 200218(5)∶S634-638.
返回引文位置Google Scholar
百度学术
万方数据
[13]
Porter J Queener H Lin J et al. Adaptive optics for vision science:principles,practices,design,and applications[M]Hoboken,New JerseyWiley-Interscience 20063-11.
[14]
Manzanera S Prieto PM Ayala DB et al. Liquid crystal adaptive optics visual simulator:application to testing and design of ophthalmic optical elements[J/OL]Opt Express 200715(24)∶16177-16188[2021-04-26]http://www.ncbi.nlm.nih.gov/pubmed/19550905. DOI: 10.1364/oe.15.016177 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Otero C Vilaseca M Arjona M et al. Comparison of the adaptive optics vision analyzer and the KR-1 W for measuring ocular wave aberrations[J]Clin Exp Optom 2017100(1)∶26-32. DOI: 10.1111/cxo.12413 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Thibos LN Wheeler W Horner D Power vectors:an application of Fourier analysis to the description and statistical analysis of refractive error[J]Optom Vis Sci 199774(6)∶367-375. DOI: 10.1097/00006324-199706000-00019 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Koo TK Li MY . A guideline of selecting and reporting intraclass correlation coefficients for reliability research[J]J Chiropr Med 201615(2)∶155-163. DOI: 10.1016/j.jcm.2016.02.012 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Adler D Millodot M The possible effect of undercorrection on myopic progression in children[J]Clin Exp Optom 200689(5)∶315-321. DOI: 10.1111/j.1444-0938.2006.00055.x .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Lin Z Vasudevan B Ciuffreda KJ et al. The difference between cycloplegic and non-cycloplegic autorefraction and its association with progression of refractive error in Beijing urban children[J]Ophthalmic Physiol Opt 201737(4)∶489-497. DOI: 10.1111/opo.12381 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Zhao J Mao J Luo R et al. Accuracy of noncycloplegic autorefraction in school-age children in China[J]Optom Vis Sci 200481(1)∶49-55. DOI: 10.1097/00006324-200401000-00010 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Morgan IG Iribarren R Fotouhi A et al. Cycloplegic refraction is the gold standard for epidemiological studies[J]Acta Ophthalmol 201593(6)∶581-585. DOI: 10.1111/aos.12642 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Tabernero J Otero C Pardhan S A comparison between refraction from an adaptive optics visual simulator and clinical refractions[J/OL]Transl Vis Sci Technol 2020,9(7)∶23[2021-04-26]https://pubmed.ncbi.nlm.nih.gov/32832229/. DOI: 10.1167/tvst.9.7.23 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Guo H DeLestrange E Experimentally observe the effect of spherical aberration on diffractive intraocular lens using adaptive optics[J/OL]J Biomed Opt 201520(3)∶036008[2021-06-10]http://www.ncbi.nlm.nih.gov/pubmed/25764312. DOI: 10.1117/1.JBO.20.3.036008 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Liang J Williams DR . Aberrations and retinal image quality of the normal human eye[J]J Opt Soc Am A Opt Image Sci Vis 199714(11)∶2873-2883. DOI: 10.1364/josaa.14.002873 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Chen L Artal P Gutierrez D et al. Neural compensation for the best aberration correction[J/OL]J Vis 20077(10)∶9.1-9[2021-06-10]http://pubmed.ncbi.nlm.nih.gov/17997678. DOI: 10.1167/7.10.9 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
兰长骏,Email: mocdef.aabnisnujgnahcnal
B

周桂梅:直接参与试验研究、采集数据、分析和解释数据、文章撰写;谭青青:参与设计试验、对文章的知识性内容作批评性审阅、数据统计分析;廖萱:参与设计试验、对文章的知识性内容作批评性审阅、技术指导;钱玖林:直接参与试验研究、采集数据;兰长骏:参与设计试验、对文章中知识性内容作批评性审阅、获取研究经费

C
所有作者均声明不存在任何利益冲突
D
四川省卫计委重点课题项目 (18ZD022)
南充市校合作重大攻关项目 (18SXHZ0492)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号