综述
ENGLISH ABSTRACT
自适应光学技术在眼科的应用进展
钱玖林
廖萱 [综述]
兰长骏 [综述]
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20200801-00550
Progress of application of adaptive optics in ophthalmology
Qian Jiulin
Liao Xuan
Lan Changjun
Authors Info & Affiliations
Qian Jiulin
Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Medical School of Ophthalmology & Optometry, North Sichuan Medical College, Nanchong 637000, China
Liao Xuan
Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Medical School of Ophthalmology & Optometry, North Sichuan Medical College, Nanchong 637000, China
Lan Changjun
Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Medical School of Ophthalmology & Optometry, North Sichuan Medical College, Nanchong 637000, China
·
DOI: 10.3760/cma.j.cn115989-20200801-00550
1376
136
0
0
6
0
PDF下载
APP内阅读
摘要

自适应光学(AO)技术能够实时测量和校正波前像差,使光学系统能适应外界条件变化,保持良好光学性能,在眼科领域逐渐受到关注。AO技术可以根据波前像差进行验光,提高主客观验光的效率和准确性;消除人眼像差对视网膜成像的影响,为视神经功能评价提供更精准的数据;改善视知觉学习训练的效果,为特殊人群提供视力保健和治疗方法;模拟和预测术后视觉效果,为屈光手术和人工晶状体植入术的个性化方案选择提供依据。AO与光相干断层扫描技术、光学扫描激光检眼镜、共焦扫描激光检眼镜等结合,可以实现实时眼底成像和视网膜血管成像,提供更高的视网膜检测灵敏度和分辨率,分辨更精细的视网膜血管以及视锥细胞细节,表征视网膜色素上皮细胞层拓扑和变形,其在眼后节激光手术、青光眼诊断与随访、色盲和视网膜生理活动研究领域的应用备受关注。本文就AO技术原理及其在眼科领域的应用进行综述。

光学和光子学/方法;验光;角膜波前像差;自适应光学;视功能;视觉模拟;视网膜成像
ABSTRACT

Adaptive optics (AO) can measure and correct wavefront aberrations in real time, which enables the optical system to adapt to external changes and maintain excellent optical performance, and has been gradually paid attention in the field of ophthalmology.AO technology can carry out optometry according to wavefront aberrations to improve the efficiency and accuracy of subjective and objective refraction, eliminate the influence of ocular aberrations on retinal imaging, provide more accurate data for the evaluation of optic nerve function, improve the effectiveness of visual perception training and provide vision care and treatment for special people, as well as simulate and predict postoperative visual outcome and give personalized schemes for refractive surgery and intraocular lens implantation.Moreover, AO combined with optical coherence tomography, optical scanning laser ophthalmoscope, and confocal scanning laser ophthalmoscope, can realize fundus imaging and retinal vascular imaging in real time, provide better sensitivity and resolution of retinal detection, distinguish fine details of retinal vessels and cone cells, and characterize retinal pigment epithelium topology and deformation, the application of which in posterior segment laser surgery, glaucoma diagnosis and follow-up, color blindness and retinal physiological activity research has been attracting attention.In this article, the principle and application of AO in ophthalmology were briefly reviewed.

Optics and photonics/methods;Optometry;Corneal wavefront aberration;Adaptive optics;Visual function;Visual simulation;Retinal imaging
Lan Changjun, Email: mocdef.aabnisnujgnahcnal
引用本文

钱玖林,廖萱,兰长骏. 自适应光学技术在眼科的应用进展[J]. 中华实验眼科杂志,2022,40(03):284-288.

DOI:10.3760/cma.j.cn115989-20200801-00550

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
自1609年开始使用望远镜观察天体以来,研究者发现大气湍流的动态扰动使星像不断抖动,成像光斑的形状也不断变化。为使观察更清晰和稳定,自适应光学(adaptive optics,AO)的概念在20世纪中叶应运而生 [ 1 ]。人眼是特殊的光学系统,一般的眼科成像设备难以实现高分辨率眼底成像。利用AO技术可以动态地校正人眼像差 [ 2 , 3 ],获得接近人眼衍射极限的高分辨率视网膜细胞图像,有助于从细胞水平研究眼病的发病机制、做出早期诊断、评价干预效果,为视觉科学研究提供一种新的方法。1997年,Liang等 [ 4 ]首次将AO技术与眼底照相机结合后分辨率提高了2.7倍,使视网膜成像的横向分辨率达2 μm左右,获得了活体人眼视网膜单个细胞图像。此后,AO应用于眼科学领域的研究日益广泛而深入。本文就AO技术在眼科中的应用进展进行综述。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Babcock HW . The possibility of compensating astronomical seeing[J]Publ Astron Soc Pac 195365(386)∶229-236. DOI: 10.1086/126606 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Del Águila-Carrasco AJ Kruger PB Lara F et al. Aberrations and accommodation[J]Clin Exp Optom 2020103(1)∶95-103. DOI: 10.1111/cxo.12938 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
陈晓琴王雁江洋琳人眼像差在自适应光学系统矫正后的稳定性变化[J]中华实验眼科杂志 201634(10)∶941-946. DOI: 10.3760/cma.j.issn.2095-0160.2016.10.017 .
返回引文位置Google Scholar
百度学术
万方数据
Chen XQ Wang Y Jiang YL et al. Changes of ocular aberration stability after correction with adaptive optics system[J]Chin J Exp Ophthalmol 201634(10)∶941-946. DOI: 10.3760/cma.j.issn.2095-0160.2016.10.017 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[4]
Liang J Williams DR Miller DT . Supernormal vision and high-resolution retinal imaging through adaptive optics[J]J Opt Soc Am A Opt Image Sci Vis 199714(11)∶2884-2892. DOI: 10.1364/josaa.14.002884 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Piscaer P Soloviev O Verhaegen M Predictive wavefront sensorless adaptive optics for time-varying aberrations[J]J Opt Soc Am A Opt Image Sci Vis 201936(11)∶1810-1819. DOI: 10.1364/JOSAA.36.001810 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
马慧敏焦俊乔焰一种基于光强图像深度学习的波前复原方法[J/OL]激光与光电子学进展 202057(8)∶081103[2021-06-16]http://www.opticsjournal.net/Articles/OJ2079a108fa24a608/Abstract. DOI: 10.3788/LOP57.081103 .
返回引文位置Google Scholar
百度学术
万方数据
Ma HM Jiao J Qiao Y et al. Wavefront restoration method based on light intensity image deep learning[J/OL]Laser Optoelectron Prog 202057(8)∶081130[2021-06-16]http://www.opticsjournal.net/Articles/OJ2079a108fa24a608/Abstract. DOI: 10.3788/LOP57.081103 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[7]
Vera E Guzmán F Weinberger C Boosting the deep learning wavefront sensor for real-time applications[Invited][J]Appl Opt 202160(10)∶B119-B124. DOI: 10.1364/AO.417574 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Hervella L Villegas EA Prieto PM et al. Assessment of subjective refraction with a clinical adaptive optics visual simulator[J]J Cataract Refract Surg 201945(1)∶87-93. DOI: 10.1016/j.jcrs.2018.08.022 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
林政桦陈兆高文钰一款新型主客观验光一体化设备的临床评估[J]中华眼视光学与视觉科学杂志 201921(12)∶888-894. DOI: 10.3760/cma.j.issn.1674-845X.2019.12.002 .
返回引文位置Google Scholar
百度学术
万方数据
Lin ZH Chen Z Gao WY et al. Accuracy and efficiency of refraction for myopes based on the visual adaptive optics simulator[J]Chin J Optom Ophthalmol Vis Sci 201921(12)∶888-894. DOI: 10.3760/cma.j.issn.1674-845X.2019.12.002 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[10]
Meimon S Jarosz J Petit C et al. Pupil motion analysis and tracking in ophthalmic systems equipped with wavefront sensing technology[J]Appl Opt 201756(9)∶D66-D71. DOI: 10.1364/AO.56.000D66 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Yang YR Zhao JL Xiao F et al. Effect of high-order aberrations on pattern-reversal visual evoked potentials[J]Vision Res 201916152-59. DOI: 10.1016/j.visres.2019.05.008 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Yang YR Zhao JL Zhao HX et al. Objective visual performance evaluation with visual evoked potential measurements based on an adaptive optics system[J/OL]Chin Optics Letters 201816(5)∶053301 10.3788/COL201816.053301 [2021-06-26]https://opg.optica.org/col/abstract.cfm?uri=col-16-5-053301. DOI:.
返回引文位置Google Scholar
百度学术
万方数据
[13]
Hoshing A Samant M Bhosale S et al. Comparison of higher order aberrations in amblyopic and non-amblyopic eyes in pediatric patients with anisometropic amblyopia[J]Indian J Ophthalmol 201967(7)∶1025-1029. DOI: 10.4103/ijo.IJO_1625_18 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Liu CF Tseng CH Huang CY et al. Correlation between higher-order aberrations and visual acuity recovery (CoHORT) after spectacles treatment for pediatric refractive amblyopia:a pilot study using iDesign measurement[J/OL]PLoS One 202015(2)∶e0228922[2021-07-10]http://www.ncbi.nlm.nih.gov/pubmed/32059018. DOI: 10.1371/journal.pone.0228922 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Zhou J Zhang Y Dai Y et al. The eye limits the brain's learning potential[J/OL]Sci Rep 20122(1)∶364[2021-07-10]http://www.ncbi.nlm.nih.gov/pubmed/22509464. DOI: 10.1038/srep00364 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
江洋琳王雁陈晓琴自适应光学矫正高阶像差结合视知觉学习对难治性弱视的治疗效果[J]中华眼视光学与视觉科学杂志 201618(10)∶597-602. DOI: 10.3760/cma.j.issn.1674-845X.2016.10.005 .
返回引文位置Google Scholar
百度学术
万方数据
Jiang YL Wang Y Chen XQ et al. The therapy outcome of higher order abberration correction combined with visual perceptual learning on residual amblyopia[J]Chin J Optom Ophthalmol Vis Sci 201618(10)∶597-602. DOI: 10.3760/cma.j.issn.1674-845X.2016.10.005 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[17]
Liao M Zhao HX Liu LQ et al. Training to improve contrast sensitivity in amblyopia:correction of high-order aberrations[J/OL]Sci Rep 2016635702[2021-07-10]https://pubmed.ncbi.nlm.nih.gov/27752122/. DOI: 10.1038/srep35702 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Ghosh A Zheleznyak L Barbot A et al. Neural adaptation to peripheral blur in myopes and emmetropes[J]Vision Res 201713269-77. DOI: 10.1016/j.visres.2016.09.017 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Roe JR Manche EE . Prospective,randomized,contralateral eye comparison of wavefront-guided and wavefront-optimized laser in situ keratomileusis[J]Am J Ophthalmol 2019207175-183. DOI: 10.1016/j.ajo.2019.05.026 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
李仕明熊瑛李婧自适应光学矫正LASIK术后眼高阶像差对视觉质量的影响[J]中华实验眼科杂志 200927(7)∶588-591. DOI: 10.3760/cma.j.issn.2095-0160.2009.07.012 .
返回引文位置Google Scholar
百度学术
万方数据
Li SM Xiong Y Li J et al. Effects of high order aberration on visual quality in post-LASIK eyes with adaptive optics[J]Chin J Exp Ophthalmol 200927(7)∶588-591. DOI: 10.3760/cma.j.issn.2095-0160.2009.07.012 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[21]
Guo H Fallah HR Dainty C et al. Subjective evaluation of intraocular lenses by visual acuity measurement using adaptive optics[J]Opt Lett 201237(12)∶2226-2228. DOI: 10.1364/OL.37.002226 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Pérez-Vives C Dominguez-Vicent A García-Lázaro S et al. Optical and visual quality comparison of implantable collamer lens and laser in situ keratomileusis for myopia using an adaptive optics visual simulator[J]Eur J Ophthalmol 201323(1)∶39-46. DOI: 10.5301/ejo.5000188 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Vinas M Benedi-Garcia C Aissati S et al. Visual simulators replicate vision with multifocal lenses[J/OL]Sci Rep 20199(1)∶1539[2021-07-12]https://pubmed.ncbi.nlm.nih.gov/30733540/. DOI: 10.1038/s41598-019-38673-w .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Hermann B Fernández EJ Unterhuber A et al. Adaptive-optics ultrahigh-resolution optical coherence tomography[J]Opt Lett 200429(18)∶2142-2144. DOI: 10.1364/ol.29.002142 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Villanueva R Le C Liu Z et al. Cell-vessel mismatch in glaucoma:correlation of ganglion cell layer soma and capillary densities[J/OL]Invest Ophthalmol Vis Sci 202162(13)∶2[2022-01-10]http://www.ncbi.nlm.nih.gov/pubmed/34605879. DOI: 10.1167/iovs.62.13.2 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Liu Z Saeedi O Zhang F et al. Quantification of retinal ganglion cell morphology in human glaucomatous eyes[J/OL]Invest Ophthalmol Vis Sci 202162(3)∶34[2022-01-10]http://www.ncbi.nlm.nih.gov/pubmed/33760041. DOI: 10.1167/iovs.62.3.34 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Datlinger F Wassermann L Reumueller A et al. Assessment of detailed photoreceptor structure and retinal sensitivity in diabetic macular ischemia using adaptive optics-oct and microperimetry[J/OL]Invest Ophthalmol Vis Sci 202162(13)∶1[2022-01-10]http://www.ncbi.nlm.nih.gov/pubmed/34605880. DOI: 10.1167/iovs.62.13.1 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Hafner J Salas M Scholda C et al. Dynamic changes of retinal microaneurysms in diabetes imaged with in vivo adaptive optics optical coherence tomography [J]Invest Ophthalmol Vis Sci 201859(15)∶5932-5940. DOI: 10.1167/iovs.18-24573 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Liu Z Kocaoglu OP Miller DT . 3D Imaging of retinal pigment epithelial cells in the living human retina[J]Invest Ophthalmol Vis Sci 201657(9)∶OCT533-543. DOI: 10.1167/iovs.16-19106 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Park SS Bauer G Abedi M et al. Intravitreal autologous bone marrow CD34 +cell therapy for ischemic and degenerative retinal disorders:preliminary phase 1 clinical trial findings [J]Invest Ophthalmol Vis Sci 201456(1)∶81-89. DOI: 10.1167/iovs.14-15415 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Ju MJ Hsu D Kwon JH et al. Multi-scale and-contrast sensorless adaptive optics optical coherence tomography[J]Quant Imaging Med Surg 20199(5)∶757-768. DOI: 10.21037/qims.2019.05.17 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Matthias B Zabic M Brockmann D et al. Adaptive optics assisted and optical coherence tomography guided fs-laser system for ophthalmic surgery in the posterior eye[J/OL]J Biomed Opt 201621(12)∶121512[2021-07-12]https://pubmed.ncbi.nlm.nih.gov/27973664/. DOI: 10.1117/1.JBO.21.12.121512 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Torti C Povazay B Hofer B et al. Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina[J/OL]Opt Express 200917(22)∶19382-19400[2021-07-12]http://www.ncbi.nlm.nih.gov/pubmed/19997159. DOI: 10.1364/OE.17.019382 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Roorda A Romero-Borja F Donnelly Iii W et al. Adaptive optics scanning laser ophthalmoscopy[J]Opt Express 200210(9)∶405-412. DOI: 10.1364/oe.10.000405 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
李凌霄何益王媛媛双光源自适应共焦检眼镜[J]光电工程 201946(2)∶180137. DOI: 10.12086/oee.2019.180137 .
返回引文位置Google Scholar
百度学术
万方数据
Li LX He Y Wang YY et al. Adaptive optic scanning laser ophthalmoscopy with two sources[J]Opto-Electron Eng 201946(2)∶180137. DOI: 10.12086/oee.2019.180137 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[36]
江慧绿廖娜李超宏高帧频紧凑型自适应光学扫描激光检眼镜[J]光学学报 201535(11)∶251-260. DOI: 10.3788/AOS201535.1117002 .
返回引文位置Google Scholar
百度学术
万方数据
Jiang HL Liao N Li CH et al. High-speed compact adaptive optics scanning laser ophthalmoscope[J]Acta Optica Sinica 201535(11)∶251-260. DOI: 10.3788/AOS201535.1117002 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[37]
Chen M Cooper RF Han GK et al. Multi-modal automatic montaging of adaptive optics retinal images[J]Biomed Opt Express 20167(12)∶4899-4918. DOI: 10.1364/BOE.7.004899 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Palochak C Lee HE Song J et al. Retinal blood velocity and flow in early diabetes and diabetic retinopathy using adaptive optics scanning laser ophthalmoscopy[J/OL]J Clin Med 20198(8)∶1165[2021-07-30]http://pubmed.ncbi.nlm.nih.gov/31382617. DOI: 10.3390/jcm8081165 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
Warner RL Gast TJ Sapoznik KA et al. Measuring temporal and spatial variability of red blood cell velocity in human retinal vessels[J/OL]Invest Ophthalmol Vis Sci 202162(14)∶29[2021-07-30]http://www.ncbi.nlm.nih.gov/pubmed/34846516. DOI: 10.1167/iovs.62.14.29 .
返回引文位置Google Scholar
百度学术
万方数据
[40]
Musial G Adhikari S Mirhajianmoghadam H et al. Longitudinal in vivo changes in radial peripapillary capillaries and optic nerve head structure in non-human primates with early experimental glaucoma [J/OL]Invest Ophthalmol Vis Sci 202263(1)∶10[2022-01-10]http://www.ncbi.nlm.nih.gov/pubmed/34994770. DOI: 10.1167/iovs.63.1.10 .
返回引文位置Google Scholar
百度学术
万方数据
[41]
Rossi EA Granger CE Sharma R et al. Imaging individual neurons in the retinal ganglion cell layer of the living eye[J]Proc Natl Acad Sci U S A 2017114(3)∶586-591. DOI: 10.1073/pnas.1613445114 .
返回引文位置Google Scholar
百度学术
万方数据
[42]
Azimipour M Jonnal RS Werner JS et al. Coextensive synchronized SLO-OCT with adaptive optics for human retinal imaging[J]Opt Lett 201944(17)∶4219-4222. DOI: 10.1364/OL.44.004219 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
兰长骏,Email: mocdef.aabnisnujgnahcnal
B
所有作者均声明不存在利益冲突
C
四川省卫计委重点课题项目 (18ZD022)
南充市校合作重大攻关项目 (18SXHZ0492)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号