Processing math: 100%
论著·感染及脓毒症
ENGLISH ABSTRACT
人脂肪间充质干细胞外泌体对小鼠RAW264.7细胞的炎症反应和小鼠全层皮肤缺损创面愈合的影响
沈括
王许杰
刘开拓
李少珲
李晋
张锦鑫
王洪涛
胡大海
作者及单位信息
·
DOI: 10.3760/cma.j.cn501120-20201116-00477
Effects of exosomes from human adipose-derived mesenchymal stem cells on inflammatory response of mouse RAW264.7 cells and wound healing of full-thickness skin defects in mice
Shen Kuo
Wang Xujie
Liu Kaituo
Li Shaohui
Li Jin
Zhang Jinxin
Wang Hongtao
Hu Dahai
Authors Info & Affiliations
Shen Kuo
Department of Burns and Cutaneous Surgery, Burn Center of PLA, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
Wang Xujie
Department of Burns and Cutaneous Surgery, Burn Center of PLA, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
Liu Kaituo
Department of Burns and Cutaneous Surgery, Burn Center of PLA, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
Li Shaohui
Department of Burns and Cutaneous Surgery, Burn Center of PLA, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
Li Jin
Department of Burns and Cutaneous Surgery, Burn Center of PLA, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
Zhang Jinxin
Department of Emergency, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
Wang Hongtao
Department of Burns and Cutaneous Surgery, Burn Center of PLA, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
Hu Dahai
Department of Burns and Cutaneous Surgery, Burn Center of PLA, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
·
DOI: 10.3760/cma.j.cn501120-20201116-00477
1435
294
0
0
0
0
PDF下载
APP内阅读
摘要

目的探讨人脂肪间充质干细胞(ADSC)外泌体对小鼠RAW264.7细胞介导的炎症反应和小鼠全层皮肤缺损创面愈合的影响。

方法采用实验研究方法。取2020年6—9月于空军军医大学第一附属医院行腹部手术的3例女性患者(10~25岁)废弃脂肪组织,采用Ⅰ型胶原酶消化法提取ADSC,采用流式细胞术进行鉴定。使用差速超高速离心法提取人ADSC外泌体,采用透射电子显微镜观察形态,纳米颗粒跟踪分析仪检测粒径,蛋白质印迹法检测CD9、CD63、肿瘤易感基因101(TSG101)和β肌动蛋白的蛋白表达。将人ADSC外泌体与RAW264.7细胞共培养12 h后,观察RAW264.7细胞对人ADSC外泌体的吞噬情况。将RAW264.7细胞分为采用磷酸盐缓冲液(PBS)刺激适宜时间的PBS组及内毒素/脂多糖(LPS)刺激相应时间点的LPS刺激2 h组、LPS刺激4 h组、LPS刺激6 h组、LPS刺激12 h组、LPS刺激24 h组,每组3孔,采用实时荧光定量反转录PCR(RT-PCR)法检测白细胞介素1β(IL-1β)、肿瘤坏死因子α(TNF-α)、IL-6及IL-10的mRNA表达。将RAW264.7细胞分为PBS组、单纯LPS组、LPS+ADSC外泌体组,每组3孔,按前一实验筛选的时间进行相应刺激,采用实时荧光定量RT-PCR法检测IL-1β、TNF-α、IL-6、IL-10、转化生长因子β(TGF-β)及血管内皮生长因子(VEGF)mRNA表达,采用蛋白质印迹法检测诱导型一氧化氮合酶(iNOS)、精氨酸酶1(Arg1)的蛋白表达。取24只8周龄雄性BALB/c小鼠,采用随机数字表法分为ADSC外泌体组和PBS组,每组12只,在背部造成1 cm×1 cm的全层皮肤缺损创面。伤后即刻,2组小鼠创面分别进行相应的处理。伤后1 d,采用酶联免疫吸附测定法检测血清中IL-1β和TNF-α的浓度,采用实时荧光定量RT-PCR法检测创面组织IL-1β、TNF-α及IL-6的mRNA表达。伤后3、6、9、12、15 d观察创面愈合情况,并计算创面未愈合率;伤后15 d,行苏木精-伊红染色和Masson染色,分别检测创面皮肤附件缺损长度及胶原容积分数(CVF);免疫组织化学法检测创面CD31表达及血管新生情况;免疫荧光法检测创面Ki67阳性细胞比、iNOS和Arg1双阳性细胞比、iNOS阳性细胞和Arg1阳性细胞的比值及两者的荧光强度。动物实验中样本数均为6。对数据行重复测量方差分析、单因素方差分析、独立样本 t检验。

结果培养12 h,细胞呈典型梭形结构,经流式细胞术鉴定为ADSC。外泌体呈囊泡状,粒径29~178 nm,表达CD9、CD63及TSG101而不表达β肌动蛋白。共培养12 h后,人ADSC外泌体成功被RAW264.7细胞吞入细胞质。LPS刺激2 h组、LPS刺激4 h组、LPS刺激6 h组、LPS刺激12 h组、LPS刺激24 h组RAW264.7细胞IL-1β、TNF-α、IL-6、IL-10 mRNA表达均明显高于PBS组( t值分别为39.10、14.55、28.80、4.74,48.80、22.97、13.25、36.34,23.12、18.71、29.19、41.08,11.68、18.06、8.54、43.45,62.31、22.52、21.51、37.13, P<0.01),选择各种炎症因子表达均高表达的刺激12 h作为后续实验时间点。刺激12 h后,单纯LPS组RAW264.7细胞IL-1β、TNF-α、IL-6、IL-10 mRNA表达均明显高于PBS组( t值分别为44.20、51.26、14.71、8.54, P<0.01);LPS+ADSC外泌体组RAW264.7细胞IL-1β、TNF-α、IL-6 mRNA表达均明显低于单纯LPS组( t值分别为22.89、25.51、8.03, P<0.01),而IL-10、TGF-β和VEGF mRNA表达均明显高于单纯LPS组( t值分别9.89、13.12、7.14, P<0.01)。刺激12 h后,单纯LPS组RAW264.7细胞iNOS的蛋白表达明显高于PBS组和LPS+ADSC外泌体组( t值分别为11.20、5.06, P<0.05或 P<0.01),Arg1蛋白表达明显低于LPS+ADSC外泌体组( t=15.01, P<0.01)。伤后1 d,ADSC外泌体组小鼠血清中IL-1β和TNF-α浓度及创面组织中IL-1β、TNF-α、IL-6 mRNA表达均明显低于PBS组( t值分别为15.44、12.24,9.24、7.12、10.62, P<0.01)。伤后3、6、9、12、15 d,ADSC外泌体组小鼠创面未愈合率分别为(73.2±4.1)%、(53.8±3.8)%、(42.1±5.1)%、(24.1±2.8)%、0,均分别明显低于PBS组的(82.5±3.8)%、(71.2±4.6)%、(52.9±4.1)%、(41.5±3.6)%、(14.8±2.5)%( t值分别为4.77、8.93、5.54、7.63、7.59, P<0.01)。伤后15 d,PBS组小鼠创面皮肤附件缺损长度明显长于ADSC外泌体组( t=9.50, P<0.01),CVF明显低于ADSC外泌体组( t=9.15, P<0.01)。伤后15 d,ADSC外泌体组小鼠创面组织CD31阳性表达和新生血管数( t=12.99, P<0.01)明显多于PBS组,Ki67阳性细胞比明显高于PBS组( t=7.52, P<0.01)。伤后15 d,PBS组小鼠创面组织iNOS和Arg1双阳性细胞比为(12.33±1.97)%,明显高于ADSC外泌体组的(1.78±0.29)%( t=13.04, P<0.01),且iNOS荧光强度明显强于ADSC外泌体组,Arg1荧光强度明显强于ADSC外泌体组,iNOS阳性细胞和Arg1阳性细胞的比值明显高于ADSC外泌体组( t=35.16, P<0.01)。

结论人ADSC外泌体可以减轻小鼠RAW264.7细胞的炎症反应,在小鼠全层皮肤缺损创面中减少巨噬细胞浸润和促炎性细胞因子分泌,增加抗炎细胞因子分泌,促进新生血管形成,增强创面细胞增殖,加速创面愈合。

伤口愈合;炎症;外泌体;脂肪间充质干细胞
ABSTRACT

ObjectiveTo investigate the effects of exosomes from human adipose-derived mesenchymal stem cells (ADSCs) on inflammatory response of mouse RAW264.7 cells and wound healing of full-thickness skin defects in mice.

MethodsThe experimental research methods were adopted. The discarded adipose tissue was collected from 3 female patients (aged 10-25 years) who underwent abdominal surgery in the First Affiliated Hospital of Air Force Medical University. ADSCs were extracted from the adipose tissue by collagenase Ⅰ digestion and identified with flow cytometry. Exosomes were extracted from the human ADSCs by differential ultracentrifugation, the morphology of the exosomes was observed by transmission electron microscopy, the particle diameter of the exosomes was detected by nanoparticle tracking analyzer, and the protein expressions of CD9, CD63, tumor susceptibility gene 101 (TSG101), and β-actin were detected by Western blotting. The human ADSCs exosomes (ADSCs-Exos) and RAW264.7 cells were co-cultured for 12 h, and the uptake of RAW264.7 cells for human ADSCs-Exos was observed. The RAW264.7 cells were divided into phosphate buffer solution (PBS) group stimulated with PBS for suitable time, endotoxin/lipopolysaccharide (LPS) stimulation 2 h group, LPS stimulation 4 h group, LPS stimulation 6 h group, LPS stimulation 12 h group, and LPS stimulation 24 h group stimulated with LPS for corresponding time, with 3 wells in each group, and the mRNA expressions of interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), IL-6, and IL-10 were detected by real-time fluorescence quantitative reverse transcription polymerase chain reaction (RT-PCR) method. The RAW264.7 cells were divided into PBS group, LPS alone group, and LPS+ADSCs-Exos group, with 3 wells in each group, which were dealt correspondingly for the time screened out in the previous experiment, the mRNA expressions of IL-1β, TNF-α, IL-6, IL-10, trasforming growth factor β (TGF-β,) and vascular endothelial growth factor (VEGF) were detected by real time fluorescence quantitative RT-PCR method, and the protein expressions of inducible nitric oxide synthase (iNOS) and arginase 1 (Arg1) were detected by Western blotting. Twenty-four 8-week-old male BALB/c mice were divided into PBS group and ADSCs-Exos group according to the random number table, with 12 mice in each group, and a full-thickness skin defect wound with area of 1 cm×1 cm was inflicted on the back of each mouse. Immediately after injury, the wounds of mice in the two groups were dealt correspondingly. On post injury day (PID) 1, the concentration of IL-1β and TNF-α in serum were detected by enzyme-linked immunosorbent assay, and the mRNA expressions of IL-1β, TNF-α, and IL-6 were detected by real time fluorescence quantitative RT-PCR method. On PID 3, 6, 9, 12, and 15, the wound healing was observed and the wound non-healing rate was calculated. On PID 15, the defect length of skin accessory and collagen volume fraction (CVF) were detected by hematoxylin eosin staining and Masson staining, respectively, the CD31 expression and neovascularization were detected by immunohistochemistry, and the ratio of Ki67 positive cells, the ratio of iNOS and Arg1 double positive cells, and the ratio of iNOS positive cells to Arg1 positive cells and their fluorescence intensities were detected by immunofluorescence method. The number of samples in animal experiments was 6. Data were statistically analyzed with analysis of variance for repeated measurement, one-way analysis of variance, and independent sample t test.

ResultsAt 12 h of culture, the cells exhibited a typical spindle shape, which were verified as ADSCs with flow cytometry. The exosomes with a vesicular structure and particle diameters of 29-178 nm, were positively expressed CD9, CD63, and TSG101 and negatively expressed β-actin. After 12 h of co-culture, the human ADSCs-Exos were endocytosed into the cytoplasm by RAW264.7 cells. The mRNA expressions of IL-1β, TNF-α, IL-6, and IL-10 of RAW264.7 cells in LPS stimulation 2 h group, LPS stimulation 4 h group, LPS stimulation 6 h group, LPS stimulation 12 h group, and LPS stimulation 24 h group were significantly higher than those in PBS group (with t) values of 39.10, 14.55, 28.80, 4.74, 48.80, 22.97, 13.25, 36.34, 23.12, 18.71, 29.19, 41.08, 11.68, 18.06, 8.54, 43.45, 62.31, 22.52, 21.51, and 37.13, respectively, P<0.01). The stimulation 12 h with significant expressions of all the inflammatory factors was selected as the time point in the following experiment. After stimulation of 12 h, the mRNA expressions of IL-1β, TNF-α, IL-6, and IL-10 of RAW264.7 cells in LPS alone group were significantly higher than those in PBS group (with t values of 44.20, 51.26, 14.71, and 8.54, respectively, P<0.01); the mRNA expressions of IL-1β, TNF-α, and IL-6 of RAW264.7 cells in LPS+ADSCs-Exos group were significantly lower than those in LPS alone group (with t values of 22.89, 25.51, and 8.03, respectively, P<0.01), while the mRNA expressions of IL-10, TGF-β, and VEGF were significantly higher than those in LPS alone group (with t values of 9.89, 13.12, and 7.14, respectively, P<0.01). After stimulation of 12 h, the protein expression of iNOS of RAW264.7 cells in LPS alone group was significantly higher than that in PBS group and LPS+ADSCs-Exos group, respectively (with t values of 11.20 and 5.06, respectively, P<0.05 or P<0.01), and the protein expression of Arg1 was significantly lower than that in LPS+ADSCs-Exos group ( t=15.01, P<0.01). On PID 1, the serum concentrations of IL-1β and TNF-α and the mRNA expressions of IL-1β, TNF-α, and IL-6 in wound tissue of mice in ADSCs-Exos group were significantly those in lower than PBS group (with t values of 15.44, 12.24, 9.24, 7.12, and 10.62, respectively, P<0.01). On PID 3, 6, 9, 12, and 15 d, the wound non-healing rates of mice in ADSCs-Exos group were (73.2±4.1)%, (53.8±3.8)%, (42.1±5.1)%, (24.1±2.8)%, and 0, which were significantly lower than (82.5±3.8)%, (71.2±4.6)%, (52.9±4.1)%, (41.5±3.6)%, and (14.8±2.5)% in PBS group, respectively (with t values of 4.77, 8.93, 5.54, 7.63, and 7.59, respectively, P<0.01). On PID 15, the defect length of skin accessory in wounds of mice in PBS group was significantly longer than that in ADSCs-Exos group ( t=9.50, P<0.01), and the CVF was significantly lower than that in ADSCs-Exos group ( t=9.15, P<0.01). On PID 15, the CD31 expression and the number of new blood vessels ( t=12.99, P<0.01), in wound tissue of mice in ADSCs-Exos group were significantly more than those in PBS group, and the ratio of Ki67 positive cells was significantly higher than that in PBS group ( t=7.52, P<0.01). On PID 15, the ratio of iNOS and Arg1 double positive cells in wound tissue of mice in PBS group was (12.33±1.97)%, which was significantly higher than (1.78±0.29)% in ADSCs-Exos group ( t=13.04, P<0.01), the ratio of iNOS positive cells and the fluorescence intensity of iNOS were obviously higher than those of ADSCs-Exos group, and the ratio of Arg1 positive cells and the fluorescence intensity of Arg1 were obviously lower than those of ADSCs-Exos group.

ConclusionsThe human ADSCs-Exos can alleviate inflammatory response of mouse RAW264.7 cells, decrease macrophage infiltration and secretion of the pro-inflammatory cytokines, increase the secretion of anti-inflammatory cytokines to promote neovascularization and cell proliferation in full-thickness skin defect wounds of mice, hence accelerating wound healing.

Wound healing;Inflammation;Exosomes;Adipose-derived mesenchymal stem cells
Hu Dahai, Email: nc.defudabe.ummfiahduh

Shen K,Wang XJ,Liu KT,et al.Effects of exosomes from human adipose-derived mesenchymal stem cells on inflammatory response of mouse RAW264.7 cells and wound healing of full-thickness skin defects in mice[J].Chin J Burns Wounds,2022,38(3):215-226.DOI: 10.3760/cma.j.cn501120-20201116-00477.

引用本文

沈括,王许杰,刘开拓,等. 人脂肪间充质干细胞外泌体对小鼠RAW264.7细胞的炎症反应和小鼠全层皮肤缺损创面愈合的影响[J]. 中华烧伤与创面修复杂志,2022,38(03):215-226.

DOI:10.3760/cma.j.cn501120-20201116-00477

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
皮肤损伤是最常见疾病之一,也是临床治疗的重点和难点,美国约15%的医疗保险受益人因皮肤损伤相关疾病就诊 1。慢性创面治疗周期长、费用高,影响患者的生活质量及心理健康,同时给医疗系统带来巨大压力 2。近年来,虽然在创面治疗方面有了较大的进展 3 , 4 , 5 , 6,但各种治疗措施的治疗效果仍难以令人满意。
脂肪间充质干细胞(ADSC)及其外泌体可通过增强创面愈合过程中多种效应细胞功能,促进创面愈合 7 , 8 , 9 , 10。本课题组前期研究表明,ADSC外泌体可促进创面愈合过程中Fb、KC的增殖和迁移,加速创面愈合 11 , 12。有文献报道,ADSC外泌体也可调节血管内皮细胞功能,促进新生血管的形成,加速创面愈合 13 , 14 , 15 , 16。巨噬细胞在创面愈合过程中发挥重要作用,而ADSC外泌体可通过减轻巨噬细胞介导的炎症反应在脓毒症等多种疾病中减轻器官损伤 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24。但ADSC外泌体能否在创面愈合中通过调控巨噬细胞介导的炎症反应,发挥促进创面愈合的作用,尚鲜见报道。本研究探讨人ADSC外泌体对创面愈合过程中巨噬细胞介导的炎症反应的调控作用及对小鼠全层皮肤缺损创面愈合的影响,以期进一步阐明ADSC外泌体促进创面愈合的机制。
1 材料与方法
本实验研究遵循空军军医大学动物实验伦理委员会和国家有关实验动物管理和使用的规定。
1.1 动物和细胞及主要试剂与仪器来源
24只健康无特殊病原体级8周龄体重23~25 g雄性BALB/c小鼠购自空军军医大学实验动物中心,许可证号:SYXK(军)2012-0022。RAW264.7小鼠单核巨噬细胞白血病细胞系购自美国典型培养物保藏中心,α型最低必须培养基(α-MEM)、RPMI 1640培养基购自美国HyClone公司,胎牛血清购自美国Biological Industries公司,青霉素/链霉素、胰蛋白酶购自美国Gibco公司,PBS、增强型细胞裂解液、辣根过氧化物酶标记的山羊抗兔IgG多克隆抗体、Alexa Fluor 594标记的山羊抗兔IgG多克隆抗体和异硫氰酸荧光素(FITC)标记的兔抗山羊IgG多克隆抗体购自武汉博士德生物工程有限公司,Ⅰ型胶原酶、PKH26红色荧光细胞连接试剂盒、4′,6-二脒基-2-苯基吲哚(DAPI)购自美国Sigma 公司,藻红蛋白标记的小鼠抗人CD29、CD34、CD44、CD45、CD73和CD90单克隆抗体购自美国Becton Dickinson公司,兔抗人CD9、CD63、肿瘤易感基因101(TSG101)和β肌动蛋白单克隆抗体以及兔抗小鼠诱导型一氧化氮合酶(iNOS)、精氨酸酶1(Arg1)、β肌动蛋白、CD31、Ki67单克隆抗体及山羊抗小鼠iNOS单克隆抗体购自武汉三鹰生物技术有限公司,TRIzol试剂盒、反转录试剂盒购自生工生物工程(上海)股份有限公司。Steri-Cycle 371型二氧化碳培养箱购自美国Thermo Fisher Scientific公司,FACS AriaⅢ型流式细胞仪购自美国Becton Dickinson公司,Optima™XPN超高速离心机购自美国Beckman公司,ZetaVIEW S/N 17-310型纳米颗粒跟踪分析仪购自美国Particle Metrix公司,FSX100型全自动生物图像导航仪购自日本Olympus公司,Evos FL Auto 2型激光扫描共聚焦显微镜购自美国Invitrogen公司,Infinite M200 Pro型全波长多功能酶标仪购自瑞士TECAN公司,Chemi DOC Imaging System凝胶成像仪购自美国Bio-Rad公司,Tecnai G2 Spirit BioTwin型透射电子显微镜购自美国FEI公司,倒置相差显微镜购自德国ZEISS公司。
1.2 ADSC的提取及鉴定
2020年6—9月于空军军医大学第一附属医院行腹部手术的3例女性患者(10~25岁)签署书面知情同意书后,自愿捐赠术后废弃脂肪组织。取手术切除的新鲜脂肪组织,使用含10 g/L 青霉素/链霉素的PBS冲洗3遍,使用眼科镊去除其中结缔组织后剪至乳糜状。加入脂肪2倍体积的5 g/LⅠ型胶原酶,于37 ℃摇床中振荡消化1 h。使用孔径100 μm细胞筛过滤脂肪悬液,过滤后的悬液在室温下以300× g离心5 min,弃去上清液,加入2 mL红细胞裂解液重新悬浮,静置2 min后,室温下再次以300× g离心5 min,弃去上清液。用α-MEM(含体积分数10%胎牛血清、10 g/L 青霉素/链霉素)将细胞沉淀重新悬浮后接种至培养皿内,于37 ℃、含体积分数5%二氧化碳培养箱中培养。12 h后首次换液,于20倍倒置相差显微镜下观察细胞形态,之后每2~3天换液1次,当细胞生长达80%融合时传代。取第3代细胞,分别加入藻红蛋白标记的小鼠抗人CD29、CD34、CD44、CD45、CD73和CD90单克隆抗体(稀释比均为 1∶1 000),使用流式细胞仪检测细胞表面特异性蛋白的表达。本实验重复3次。
1.3 ADSC外泌体的提取与鉴定
取第3~5代正常生长的ADSC,待细胞生长达80%融合时,更换为无外泌体血清α-MEM(将培养基中血清以100 000× g离心16 h去除血清中外泌体),24 h后收集细胞培养上清液,差速超高速离心法提取 25并鉴定外泌体。取外泌体,在80 kV透射电子显微镜40 000倍镜下观察形态,纳米颗粒跟踪分析仪检测外泌体粒径。另取ADSC及其外泌体,使用二辛丁酸蛋白浓度测定试剂盒检测蛋白浓度,取30 μg ADSC及其外泌体,进行十二烷基硫酸钠-聚丙烯酰胺凝胶电泳,湿法转膜,用50 g/L脱脂牛奶室温下封闭1 h,分别加入兔抗人CD9、CD63、TSG101和β肌动蛋白单克隆一抗(稀释比均为1∶1 000),4 ℃孵育过夜。加入辣根过氧化物酶标记的山羊抗兔IgG多克隆二抗(稀释比为1∶5 000),室温孵育1 h后增强化学发光、显影,凝胶成像分析系统行蛋白条带灰度扫描分析。本实验重复3次。
1.4 ADSC外泌体标记和吞噬实验
取RAW264.7细胞,调整细胞密度为5×10 4个/mL,以每孔100 μL接种于96孔板中,用含体积分数10%胎牛血清的RPMI 1640培养基培养(下同)至细胞生长达60%融合。取100 μL质量浓度为1 mg/mL的ADSC外泌体,加入4 μL PKH26红色荧光细胞连接试剂,室温避光孵育5 min后,于4 ℃下以100 000× g离心1 h,获取ADSC沉淀,并用100 μL PBS重新悬浮。取20 μL PKH26标记的人ADSC外泌体悬液,加入到RAW264.7细胞培养上清液中,避光孵育12 h,用PBS清洗3次,40 g/L多聚甲醛固定15 min,加入1 μL 质量浓度0.5 μg/mL的DAPI。200倍激光扫描共聚焦显微镜下观察RAW264.7细胞对PKH26标记的人ADSC外泌体的吞噬情况。
1.5 LPS刺激不同时间对RAW264.7细胞炎症因子mRNA表达的影响
将RAW264.7细胞按照5×10 5个/mL的密度接种至6孔板中,每孔2 mL,当细胞生长达50%融合时,更换为无血清RPMI 1640培养基。将细胞分为PBS组、LPS刺激2 h组、LPS刺激4 h组、LPS刺激6 h组、LPS刺激12 h组、LPS刺激24 h组,每组3个复孔。PBS组细胞加入10 μL PBS刺激合适时间;5个LPS刺激组细胞均加入终质量浓度1 μg/mL的LPS,分别刺激2、4、6、12、24 h。使用TRIzol试剂盒提取细胞总RNA。分光光度计测浓度,取1 μg RNA,利用反转录酶合成互补DNA。根据基因文库序列,自行设计引物,委托生工生物工程(上海)股份有限公司合成,引物序列及产物大小见 表1 。以互补DNA为模板,配制总反应体系20 μL,采用实时荧光定量RT-PCR仪检测IL-1β、TNF-α、IL-6、β肌动蛋白及IL-10的mRNA表达情况。以β肌动蛋白为内参照,采用Δ循环阈值(Ct)法处理结果,即2 -ΔΔCt。以PBS组结果为1,其余5组与其比值为相应炎症因子mRNA的相对表达量。选择4种炎症因子mRNA表达均明显升高的时间点作为后续实验时间点。本实验重复3次,结果取均值。
基因名称 引物序列(5'→3') 产物大小(bp)
IL- 上游:CCCTGAACTCAACTGTGAAATAGCA 114
下游:CCCAAGTCAAGGGCTTGGAA
IL- 6 上游:GGGACTGATGCTGGTGACAA 448
下游:TCCACGATTTCCCAGAGAACA
IL- 10 上游:GATAGAGCGCAACAAGCAGAA 144
下游:CAGTGAGGCCCATACCAGAA
TNF- α 上游:ATACACTGGCCCGAGGGAAC 225
下游:CCACATCTCGGATCATGCTTTC
β肌动蛋白 上游:GTACGCCAACACAGTGCTG 143
下游:CGTCATACTCCTGCTTGCTG
实时荧光定量反转录PCR法检测的小鼠RAW264.7细胞炎症因子的引物序列及产物大小

注:IL为白细胞介素,TNF为肿瘤坏死因子

1.6 ADSC外泌体对LPS刺激的RAW264.7细胞炎症因子mRNA表达的影响
将RAW264.7细胞按照5×10 5个/mL的密度接种至6孔板中,当细胞生长达50%融合时,更换为无血清RPMI 1640培养基,将细胞分为PBS组、单纯LPS组、LPS+ADSC外泌体组,每组3个复孔。PBS组细胞中加入10 μL PBS,单纯LPS组和LPS+ADSC外泌体组细胞中均加入终质量浓度为1 μg/mL的LPS,LPS+ADSC外泌体组细胞中另加入终质量浓度50 μg/mL的ADSC外泌体。刺激1.5中筛选的时间点后,同1.5采用实时荧光定量RT-PCR法检测IL-1β、TNF-α、IL-6、IL-10、TGF-β及VEGF mRNA表达。TGF-β上游引物为5'-CCACCTGCAAGACCATCGAC-3',下游引物为5'-CTGGCGAGCCTTAGTTTGGAC-3',产物大小为91 bp;VEGF 上游引物为5'-TCTACCGTCCGGGAATCCTT-3',下游引物为5'-TACAACATCCGCCACAACGA-3',产物大小为203 bp;其余引物序列及产物大小同1.5。本实验重复3次,结果取均值。
1.7 ADSC外泌体对LPS刺激的RAW264.7细胞特异性标志物表达的影响
另取RAW264.7细胞,同1.6分组及处理,使用增强型细胞裂解液,按照试剂盒说明书步骤提取3组细胞总蛋白。使用二辛丁酸蛋白定量试剂盒测定蛋白含量后于100 ℃下变性,按照每孔20 μg蛋白行十二烷基硫酸钠-聚丙烯酰胺凝胶电泳,半干法转膜,50 g/L脱脂奶粉溶液室温封闭1 h。加入兔抗小鼠β肌动蛋白、iNOS、Arg1单克隆一抗(稀释比均为1∶1 000),4 ℃孵育过夜。洗涤3次后,加入辣根过氧化物酶标记的山羊抗兔IgG多克隆二抗(稀释比为1∶3 000),37 ℃孵育1 h。化学发光、显影,凝胶图像分析系统获取图像,采用ImageJ 软件(美国国立卫生研究院)行灰度分析。以β肌动蛋白为内参照,计算iNOS和Arg1灰度值与内参照的比值。以PBS组蛋白表达量为1,计算其余2组与PBS组的蛋白相对表达量。本实验重复 3 次,结果取均值。
1.8 ADSC外泌体对小鼠全层皮肤缺损创面愈合的影响
1.8.1 动物模型制备与分组处理
取24只BALB/c小鼠,采用随机数字表法分为ADSC外泌体组和PBS组,每组12只。通过吸入100 mg/L异氟烷将小鼠麻醉后,使用剃毛机剃去背部毛发,随后使用100 g/L硫化钠脱毛30 s后使用温水冲洗,24 h后使用眼科剪在小鼠背部制作1个1 cm×1 cm全层皮肤缺损创面。伤后即刻,于ADSC外泌体组小鼠创面边缘真皮层注射100 μL ADSC外泌体(1 mg/mL),PBS组小鼠注射等量的PBS。
1.8.2 ADSC外泌体对创面炎症因子mRNA表达的影响
伤后1 d,每组取6只小鼠,同1.8.1麻醉后进行眼球取血,37 ℃恒温水浴加热后以1 500× g离心15 min获得血清,采用ELISA法检测血清中IL-1β和TNF-α的浓度。收集取血后的小鼠创面组织,按TRIzol一步法提取总RNA,同1.5采用实时荧光定量RT-PCR法检测组织中炎症因子IL-1β、TNF-α及IL-6的mRNA表达。
1.8.3 ADSC外泌体对创面愈合的影响
取每组剩余的6只小鼠,分别于伤后0(即刻)、3、6、9、12、15 d观察创面愈合情况,使用数码相机拍照,采用ImageJ软件分析未愈合创面面积,并计算创面未愈合率。伤后15 d,观察创面愈合情况后,采用颈椎脱臼法处死小鼠,切取创面组织,固定、脱水、包埋、切片(厚4 μm),分别行HE、Masson染色,于生物图像导航仪的20、100倍光学显微镜下观察创面上皮化情况及胶原纤维再生、重塑情况,用ImageJ软件定量分析胶原容积分数(CVF),即被染为蓝色的阳性胶原面积与总面积的百分比。
1.8.4 ADSC外泌体对创面CD31表达的影响
取1.8.3制作的切片,使用PBS冲洗3次,体积分数3%过氧化氢封闭,再次使用PBS洗涤3次。用50 g/L牛血清白蛋白溶液封闭,之后在切片上滴加兔抗小鼠CD31单克隆一抗(稀释比为1∶100),在湿盒中于4 ℃孵育过夜。次日取出切片,用PBS洗涤3次,滴加辣根过氧化物酶标记的山羊抗兔IgG多克隆二抗(稀释比为1∶300),再次置于湿盒中于37 ℃孵育1 h。PBS洗涤3次,干燥处理后用二氨基联苯胺显色,随后进行苏木精染色、盐酸乙醇分化处理、乙醇脱水、二甲苯透明、中性树脂封片,于生物图像导航仪的100倍光学显微镜下观察并采集图像,用ImageJ软件分析CD31表达情况(CD31阳性染色为棕色),每个切片取3个视野计数新生血管,结果取均值。
1.8.5 ADSC外泌体对创面细胞增殖及巨噬细胞浸润的影响
取1.8.3制作的切片,经柠檬酸修复后,PBS洗涤3次。使用50 g/L的牛血清白蛋白溶液室温封闭30 min,分别加入兔抗小鼠Ki67单克隆一抗、山羊抗小鼠iNOS单克隆一抗、兔抗小鼠Arg1单克隆一抗(稀释比均为1∶400),在湿盒内于4 ℃孵育过夜。采用PBS洗涤3次后,分别加入Alexa Fluor 594标记的山羊抗兔IgG多克隆二抗和FITC标记的兔抗山羊IgG多克隆二抗(稀释比均为1∶1000)避光室温孵育1 h。PBS洗涤3次后,加入含防淬灭剂的DAPI染液,室温避光孵育5 min,稍甩干后用树脂封片剂封片。于激光扫描共聚焦显微镜200倍镜下观察Ki67(红色)、iNOS(绿色)和Arg1(红色)表达情况及其荧光强度并采集图像,计算Ki67阳性细胞比、iNOS阳性细胞和Arg1阳性细胞的比值及iNOS和Arg1双阳性细胞比。
1.9 统计学处理
采用SPSS 19.0统计软件进行分析。计量资料数据均符合正态分布,以 ˉx±s 表示。组间总体比较采用重复测量方差分析、单因素方差分析,组间两两比较采用独立样本 t检验。 P<0.05为差异有统计学意义。
2 结果
2.1 ADSC鉴定
培养12 h,细胞呈典型的梭形结构,生长密集后呈漩涡状排列,见 图1 。CD29、CD44、CD73及CD90阳性细胞百分比>90%,CD34和CD45阳性细胞百分比<5%,符合典型的干细胞特征。
原代人脂肪间充质干细胞培养12 h呈梭形,生长密集后呈漩涡状排列 倒置相差显微镜×20
2.2 ADSC外泌体鉴定
提取的外泌体为囊泡状结构,大小分布均匀( 图2A )。囊泡粒径29~178 nm,平均102.1 nm,符合外泌体尺寸( 图2B )。外泌体特异性标志物CD9、CD63及TSG101在囊泡中表达;β肌动蛋白在囊泡中不表达,而在ADSC中表达( 图2C )。
用3种方法行人采脂肪间充质干细胞(ADSC)外泌体鉴定。2A.可见清晰的囊泡状结构,大小分布均匀 透射电子显微镜×40 000;2B.纳米颗粒跟踪分析仪检测显示粒径为29~178 nm;2C.蛋白质印迹法检测外泌体特异性标志物蛋白表达情况,CD9、CD63及TSG101表达为阳性,β肌动蛋白表达为阴性

注:图2B为横坐标经过lg处理的数据形成的描记图;图2C上方1、2分别为人ADSC外泌体和人ADSC,TSG101为肿瘤易感基因101

2.3 RAW264.7细胞吞噬ADSC外泌体
共培养12 h后,人ADSC外泌体成功被RAW264.7细胞吞入细胞质( 图3 )。
共培养12 h后,小鼠RAW264.7细胞吞噬人脂肪间充质干细胞(ADSC)外泌体 PKH26-4',6-二脒基-2-苯基吲哚(DAPI)×200。3A.RAW264.7细胞核DAPI染色为蓝色;3B.PKH26标记的人ADSC外泌体染色为红色;3C.细胞核和人ADSC外泌体共染,人ADSC外泌体成功被RAW264.7细胞吞入细胞质
2.4 LPS刺激不同时间对RAW264.7细胞炎症因子mRNA表达的影响
LPS刺激2 h组、LPS刺激4 h组、LPS刺激6 h组、LPS刺激12 h组、LPS刺激24 h组RAW264.7细胞IL-1β、TNF-α、IL-6、IL-10 mRNA表达水平均明显高于PBS组( P<0.05或 P<0.01)。见 表2 。综合考虑RAW264.7细胞中各炎症因子mRNA表达,选取12 h作为后续实验时间点。
组别 样本数 IL-1β TNF-α IL-6 IL-10
PBS组 3

1.00±

0.09

1.00±

0.09

1.00±

0.10

1.00±

0.09

LPS刺激2 h组 3

1 200.24±

53.12

43.76±

5.90

899.43±

54.76

7.18±

1.05

LPS刺激4 h组 3

2 593.43±

92.23

253.43±

19.69

3 986.43±

521.76

47.89±

2.47

LPS刺激6 h组 3

4 033.24±

302.75

368.15±

34.02

5 732.35±

340.98

53.32±

3.09

LPS刺激12 h组 3

3 590.64±

532.76

439.34±

42.45

5 384.16±

1 092.08

56.16±

5.54

LPS刺激24 h组 3

2 987.75±

83.23

442.94±

34.38

3 987.12±

321.54

48.42±

0.47

F 62.62 154.41 59.26 753.43
P <0.001 <0.001 <0.001 <0.001
t 1 39.10 14.55 28.80 4.74
P 1 <0.001 <0.001 <0.001 0.002
t 2 48.80 22.97 13.25 36.34
P 2 <0.001 <0.001 <0.001 <0.001
t 3 23.12 18.71 29.19 41.08
P 3 <0.001 <0.001 <0.001 <0.001
t 4 11.68 18.06 8.54 43.45
P 4 <0.001 <0.001 0.001 <0.001
t 5 62.31 22.52 21.51 37.13
P 5 <0.001 <0.001 <0.001 <0.001
6组小鼠RAW264.7细胞中4种炎症因子mRNA表达比较( ˉx±s

注:磷酸盐缓冲液(PBS)组细胞刺激合适时间;LPS为内毒素/脂多糖、IL为白细胞介素、TNF-α为肿瘤坏死因子α; F值、 P值为6组间各指标总体比较所得; t 1值、 P 1值, t 2值、 P 2值, t 3值、 P 3值, t 4值、 P 4值, t 5值、 P 5值分别为LPS刺激2 h组、LPS刺激4 h组、LPS刺激6 h组、LPS刺激12 h组、LPS刺激24 h组与PBS组各指标比较所得

2.5 ADSC外泌体对LPS刺激的RAW264.7细胞炎症因子mRNA表达的影响
刺激12 h后,单纯LPS组RAW264.7细胞IL-1β、TNF-α、IL-6、IL-10 mRNA表达均明显高于PBS组( P<0.01),VEGF和TGF-β mRNA表达与PBS组相近( P>0.05);LPS+ADSC外泌体组RAW264.7细胞IL-1β、TNF-α、IL-6 mRNA表达均明显低于单纯LPS组( P<0.01),而IL-10、VEGF和TGF-β mRNA表达均明显高于单纯LPS组( P<0.01)。见 表3
组别 样本数 IL-1β TNF-α IL-6 IL-10 TGF-β VEGF
PBS组 3 1.00±0.09 1.00±0.11 1.00±0.11 1.00±0.12 1.00±0.21 1.00±0.10
单纯LPS组 3 3 921.65±231.02 423.47±21.06 6 432.98±1 231.34 39.93±3.04 2.15±0.34 0.91±0.21
LPS+ADSC外泌体组 3 1 891.25±132.76 213.46±13.18 2 921.90±452.72 83.27±13.17 8.27±1.30 1.89±0.30
F 488.60 656.80 54.26 85.13 70.07 15.43
P <0.001 <0.001 <0.001 <0.001 <0.001 <0.004
t 1 44.20 51.26 14.71 8.54 2.45 0.72
P 1 <0.001 <0.001 <0.001 0.002 0.270 0.870
t 2 22.89 25.51 8.03 9.89 13.12 7.14
P 2 <0.001 <0.001 0.003 0.001 <0.001 0.006
3组小鼠RAW264.7细胞刺激12 h后6种炎症因子mRNA表达比较( ˉx±s

注:PBS为磷酸盐缓冲液,LPS为内毒素/脂多糖,ADSC为脂肪间充质干细胞,IL为白细胞介素,TNF-α为肿瘤坏死因子α,TGF-β为转化生长因子β,VEGF为血管内皮生长因子; F值、 P值为组间各指标总体比较所得; t 1值、 P 1值, t 2值、 P 2值分别为PBS组、LPS+ADSC外泌体组与单纯LPS组各指标比较所得

2.6 ADSC外泌体对LPS刺激的RAW264.7细胞特异性标志物表达的影响
刺激12 h后,与PBS组比较,单纯LPS组RAW264.7细胞M1型巨噬细胞特异性标志物iNOS的蛋白表达明显升高( P<0.01),而M2型特异性标志物Arg1的蛋白表达无明显变化( P>0.05);与单纯LPS组比较,LPS+ADSC外泌体组RAW264.7细胞iNOS蛋白表达明显降低( P<0.05),而Arg1的蛋白表达明显升高( P<0.01)。见 图4表4
蛋白质印迹法检测3组小鼠RAW264.7细胞刺激12 h后特异性标志物蛋白表达水平

注:iNOS为诱导型一氧化氮合酶,Arg1为精氨酸酶1;条带上方的1、2、3分别为磷酸盐缓冲液组、单纯内毒素/脂多糖(LPS)组和LPS+脂肪间充质干细胞外泌体组

组别 样本数 iNOS Arg1
PBS组 3 1.00±0.10 1.00±0.09
单纯LPS组 3 2.25±0.25 0.87±0.06
LPS+ADSC外泌体组 3 1.48±0.20 1.83±0.15
F 31.45 66.19
P <0.001 <0.001
t 1 11.20 2.06
P 1 <0.001 0.374
t 2 5.06 15.01
P 2 0.027 <0.001
3组小鼠RAW264.7细胞刺激12 h后特异性标志物蛋白表达水平比较( ˉx±s

注:PBS为磷酸盐缓冲液,LPS为内毒素/脂多糖,ADSC为脂肪间充质干细胞,iNOS为诱导型一氧化氮合酶,Arg1为精氨酸酶1; F值、 P值为组间各指标总体比较所得; t 1值、 P 1值, t 2值、 P 2值分别为PBS组、LPS+ADSC外泌体组与单纯LPS组各指标比较所得

2.7 ADSC外泌体对创面愈合的影响
2.7.1 对创面炎症反应的影响
伤后1 d,ADSC外泌体组小鼠血清中IL-1β和TNF-α浓度分别为(23.7±2.2)、(28±3)pg/mL,均明显低于PBS组的(45.2±2.6)、(59±5)pg/mL( t值分别为15.44、12.24, P<0.001)。ADSC外泌体组小鼠创面组织中IL-1β、TNF-α、IL-6的mRNA表达均明显低于PBS组( P<0.01),见 表5
组别 样本数 IL-1β TNF-α IL-6
PBS组 6 1.00±0.10 1.000±0.181 1.00±0.13
ADSC外泌体组 6 0.56±0.06 0.683±0.022 0.36±0.07
t 9.24 7.12 10.62
P <0.001 <0.001 <0.001
2组全层皮肤缺损小鼠伤后1 d创面组织中3种炎症因子mRNA表达比较( ˉx±s

注:PBS为磷酸盐缓冲液,ADSC为脂肪间充质干细胞,IL为白细胞介素,TNF-α为肿瘤坏死因子α

2.7.2 创面愈合情况
ADSC外泌体组小鼠伤后各时间点创面面积均明显小于PBS组,见 图5 。伤后3、6、9、12、15 d,ADSC外泌体组小鼠创面未愈合率分别为(73.2±4.1)%、(53.8±3.8)%、(42.1±5.1)%、(24.1±2.8)%、0,PBS组的(82.5±3.8)%、(71.2±4.6)%、(52.9±4.1)%、(41.5±3.6)%、(14.8±2.5)%。时间因素主效应, F=213.20, P<0.001;处理因素主效应, F=1 141.00, P<0.001;两者交互作用, F=11.48, P<0.001。ADSC外泌体组小鼠伤后各时间点创面未愈合率均明显低于PBS组( t值分别为4.77、8.93、5.54、7.63、7.59, P<0.001)。
2组全层皮肤缺损小鼠伤后各时间点创面情况。5A、5B、5C、5D、5F、5F.分别为磷酸盐缓冲液组伤后0(即刻)、3、6、9、12、15 d创面情况;5G、5H、5I、5J、5K、5L.分别为脂肪间充质干细胞外泌体组伤后0、3、6、9、12、15 d创面情况,图5H、5I、5J、5K、5L创面面积分别明显小于图5B、5C、5D、5E、5F
2.7.3 创面上皮化和胶原沉积情况
伤后15 d,2组小鼠创面均上皮化,PBS组小鼠创面组织皮肤附件缺损长度为(4 650±298)μm,明显长于ADSC外泌体组的(3 287±186)μm( t=9.50, P<0.001),见 图6 ;ADSC外泌体组小鼠创面胶原沉积较PBS组增加( 图7 ),ADSC外泌体组小鼠创面组织中的CVF为(62±5)%,明显高于PBS组的(40±3)%( t=9.15, P<0.001)。
2组全层皮肤缺损小鼠伤后15 d创面上皮化情况 苏木精-伊红×20。6A、6B.分别为磷酸盐缓冲液组和人脂肪间充质干细胞外泌体组上皮化情况,图6B皮肤附件缺损长度明显短于图6A

注:图中线段为皮肤附件缺损长度

2组全层皮肤缺损小鼠伤后15 d创面组织胶原沉积情况 Masson×100。7A、7B.分别为磷酸盐缓冲液组和脂肪间充质干细胞外泌体组胶原沉积情况,图7B胶原沉积较图7A增加

注:胶原染色为蓝色

2.7.4 创面血管化情况
伤后15 d,ADSC外泌体组小鼠创面组织中CD31阳性表达细胞数明显多于PBS组,且CD31阳性细胞呈管状排列( 图8 ),ADSC外泌体组小鼠创面组织新生血管数为每100倍视野下(22.3±2.7)条,较PBS组的每100倍视野下(7.0±1.3)条明显增多( t=12.99, P<0.001)。
2组全层皮肤缺损小鼠伤后15 d创面组织CD31表达情况 二氨基联苯胺-苏木精×100。8A、8B.分别为磷酸盐缓冲液组和脂肪间充质干细胞外泌体组CD31表达情况,图8B中CD31表达较图8A明显增加

注:CD31阳性细胞染色为棕色

2.7.5 创面细胞增殖情况
伤后15 d,ADSC外泌体组小鼠创面组织中的Ki67阳性细胞比为(7.1±0.9)%,明显高于PBS组的(3.7±0.6)%( t=7.52, P<0.001)。见 图9
2组全层皮肤缺损小鼠伤后15 d创面组织细胞增殖情况 Alexa Fluor 594-4′,6-二脒基-2-苯基吲哚×200。9A、9B.分别为磷酸盐缓冲液组和脂肪间充质干细胞外泌体组细胞Ki67阳性细胞染色情况,图9B中Ki67阳性细胞明显多于图9A

注:细胞核阳性染色为蓝色,Ki67阳性细胞染色为红色

2.7.6 创面巨噬细胞浸润情况
伤后15 d,PBS组小鼠创面组织iNOS和Arg1双阳性细胞比为(12.33±1.97)%,明显高于ADSC外泌体组的(1.78±0.29)%( t=13.04, P<0.001)。ADSC外泌体组iNOS荧光强度明显弱于PBS组,而Arg1荧光强度明显强于PBS组( 图10 );ADSC外泌体组iNOS阳性细胞和Arg1阳性细胞的比值为0.21±0.06,明显低于PBS组的4.32±0.28( t=35.16, P<0.001)。
2组全层皮肤缺损小鼠伤后15 d创面巨噬细胞浸润情况 Alexa Fluor 594-异硫氰酸荧光素-4′,6-二脒基-2-苯基吲哚×200。10A.磷酸盐缓冲液组iNOS和Arg1染色;10B.脂肪间充质干细胞外泌体组iNOS和Arg1染色,图10B中Arg1荧光强度明显强于图10A,iNOS荧光强度明显弱于图10A

注:细胞核阳性染色为蓝色,诱导型一氧化氮合酶(iNOS)阳性染色为绿色,精氨酸酶1(Arg1)阳性染色为红色

3 讨论
创面是临床治疗的重点,创面能否愈合影响患者生存质量 26。虽然创面治疗进展迅速,但面对较为复杂的慢性创面,这些方法仍然疗效不佳 2。目前,干细胞疗法方兴未艾,在创面愈合方面发挥着重要的作用。但干细胞在体治疗存在易致瘤、易诱导畸形和栓塞的风险 27。而外泌体作为细胞间通讯的重要工具,可以对受体细胞进行调控,在组织损伤修复中发挥促进作用 28 , 29 , 30。研究表明,ADSC外泌体可以增强创面愈合过程中的多种效应细胞功能,发挥促进创面愈合的作用 31。本课题组前期研究表明,ADSC可通过磷脂酰肌醇3激酶/蛋白激酶B信号通路可促进Fb增殖和迁移,优化胶原沉积,进一步促进创面愈合 32。ADSC外泌体可通过其中高表达的微小RNA21,促进KC的增殖和迁移,促进创面上皮化 11;ADSC外泌体还可提高血管内皮细胞增殖和血管形成能力,促进新生毛细血管的生成 13 , 14 , 15 , 16。本研究通过差速超高速离心法提取人ADSC外泌体,并通过蛋白质印迹法、透射电子显微镜和粒径分析鉴定,表明所提取的囊泡符合外泌体的特性。
巨噬细胞在组织损伤后的免疫反应中起着重要作用 33。损伤过程中组织微环境的改变使巨噬细胞的表型通过多种极化途径发生变化 34。炎症早期出现的巨噬细胞在功能上不同于晚期的巨噬细胞,在组织修复过程中主要的巨噬细胞表型必须从M1型巨噬细胞转变为M2型巨噬细胞,以促进创面愈合和瘢痕消退。如果巨噬细胞未向M2型转化,将导致过度炎症反应,从而影响创面愈合 35。目前研究表明,ADSC外泌体可在脓毒症等其他疾病中减轻巨噬细胞介导的炎症反应,减轻组织损伤,促进组织修复 23 , 2436 , 37 , 38。本研究通过LPS刺激RAW264.7细胞,模拟体外炎症模型,结果显示LPS刺激2~24 h均能增加RAW264.7细胞炎症因子的mRNA表达。通过向RAW264.7细胞中加入人ADSC外泌体,观察人ADSC外泌体对RAW264.7细胞介导的炎症反应的调控作用,结果显示ADSC外泌体可以被RAW264.7细胞吞噬,且能明显降低LPS诱导的炎症因子的mRNA表达和增加抗炎细胞因子IL-10、VEGF和TGF-β的mRNA表达。本研究结果还表明,ADSC外泌体可以下调LPS诱导的M1型巨噬细胞特异性标志物iNOS的表达,而上调M2型巨噬细胞特异性标志物Arg1的表达,表明ADSC外泌体处理可以抑制LPS诱导的巨噬细胞炎症反应,促进巨噬细胞向M2型极化。
巨噬细胞在创面愈合的不同阶段呈现出不同的表型,发挥关键的调节作用 39 , 40。创面愈合早期,M1型巨噬细胞在损伤后浸润创面,释放多种炎症因
子,如IL-1β、IL-6和TNF-α等,以清除入侵的病原体、异物和死亡细胞 34。当组织开始修复时,巨噬细胞大部分向M2型巨噬细胞极化,具有抗炎功能的M2型巨噬细胞可以分泌抗炎细胞因子IL-10及促进组织修复的TGF-β、VEGF等生长因子,促进Fb、KC和内皮细胞的增殖和迁移,从而促进真皮、表皮和血管系统的修复 33。在重塑阶段,巨噬细胞释放基质金属蛋白酶,破坏临时的ECM,减少瘢痕形成 26。在慢性创面中,M1型巨噬细胞持续存在,没有转化为具有抗炎作用的M2型巨噬细胞,这是组织修复受损的重要原因之一 35。本研究通过在小鼠背部构建全层皮肤缺损创面,并给予人ADSC外泌体处理,观察炎症因子的表达、创面愈合情况及巨噬细胞浸润情况。结果显示,ADSC外泌体组小鼠血清、创面组织中炎症因子表达较PBS组明显降低。同时,与PBS组比较,ADSC外泌体组小鼠创面愈合速度明显加快,创面组织皮肤附件更完整,胶原和血管生成明显增多,Ki67阳性细胞比例明显增加,巨噬细胞浸润明显减少,M2型巨噬细胞比例明显增加。以上结果说明ADSC外泌体可以减轻小鼠全层皮肤缺损创面炎症反应,促进创面组织中细胞增殖能力,加速创面血管再生,并增加胶原沉积,改善胶原排列方式,从而促进创面修复。
综上所述,ADSC外泌体可减轻巨噬细胞介导的炎症反应,使M1型巨噬细胞向M2型巨噬细胞极化,同时分泌促进组织修复的细胞因子发挥促进小鼠全层皮肤缺损创面愈合的作用,但其具体分子机制仍不明确,需进一步探讨。
参考文献
[1]
Nussbaum SR , Carter MJ , Fife CE ,et al. An economic evaluation of the impact, cost, and medicare policy implications of chronic nonhealing wounds[J]. Value Health, 2018,21(1):27-32. DOI: 10.1016/j.jval.2017.07.007 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Schultz G , Bjarnsholt T , James GA ,et al. Consensus guidelines for the identification and treatment of biofilms in chronic nonhealing wounds[J]. Wound Repair Regen, 2017,25(5):744-757. DOI: 10.1111/wrr.12590 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Li Z , Maitz P . Cell therapy for severe burn wound healing[J/OL]. Burns Trauma, 2018,6:13[2020-11-16]. https://pubmed.ncbi.nlm.nih.gov/29854856/. DOI: 10.1186/s41038-018-0117-0 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Bentley C , Hazeldine J , Greig C ,et al. Dehydroepiandrosterone: a potential therapeutic agent in the treatment and rehabilitation of the traumatically injured patient[J/OL]. Burns Trauma, 2019,7:26[2020-11-16]. https://pubmed.ncbi.nlm.nih.gov/31388512/. DOI: 10.1186/s41038-019-0158-z .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Hu P , Yang Q , Wang Q ,et al. Mesenchymal stromal cells-exosomes: a promising cell-free therapeutic tool for wound healing and cutaneous regeneration[J/OL]. Burns Trauma, 2019,7:38[2020-11-16]. https://pubmed.ncbi.nlm.nih.gov/31890717/. DOI: 10.1186/s41038-019-0178-8 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Liu T , Qiu C , Ben C ,et al. One-step approach for full-thickness skin defect reconstruction in rats using minced split-thickness skin grafts with Pelnac overlay[J/OL]. Burns Trauma, 2019,7:19[2020-11-16]. https://pubmed.ncbi.nlm.nih.gov/31413962/. DOI: 10.1186/s41038-019-0157-0 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Cai Y , Li J , Jia C ,et al. Therapeutic applications of adipose cell-free derivatives: a review[J]. Stem Cell Res Ther, 2020,11(1):312. DOI: 10.1186/s13287-020-01831-3 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Hong P , Yang H , Wu Y ,et al. The functions and clinical application potential of exos omes derived from adipose mesenchymal stem cells: a comprehensive review [J]. Stem Cell Res Ther, 2019,10(1):242. DOI: 10.1186/s13287-019-1358-y .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Qiu H , Liu S , Wu K ,et al. Prospective application of exosomes derived from adipose-derived stem cells in skin wound healing: a review[J]. J Cosmet Dermatol, 2020,19(3):574-581. DOI: 10.1111/jocd.13215 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Ma T , Fu B , Yang X ,et al. Adipose mesenchymal stem cell-derived exosomes promote cell proliferation, migration, and inhibit cell apoptosis via Wnt/β-catenin signaling in cutaneous wound healing[J]. J Cell Biochem, 2019,120(6):10847-10854. DOI: 10.1002/jcb.28376 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Yang C , Luo L , Bai X ,et al. Highly-expressed micoRNA-21 in adipose derived stem cell exosomes can enhance the migration and proliferation of the HaCaT cells by increasing the MMP-9 expression through the PI3K/AKT pathway[J]. Arch Biochem Biophys, 2020,681:108259. DOI: 10.1016/j.abb.2020.108259 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Li Y , Zhang J , Shi J ,et al. Exosomes derived from human adipose mesenchymal stem cells attenuate hypertrophic scar fibrosis by miR-192-5p/IL-17RA/Smad axis[J]. Stem Cell Res Ther, 2021,12(1):221. DOI: 10.1186/s13287-021-02290-0 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Shi R , Jin Y , Hu W ,et al. Exosomes derived from mmu_circ_0000250-modified adipose-derived mesenchymal stem cells promote wound healing in diabetic mice by inducing miR-128-3p/SIRT1-mediated autophagy[J]. Am J Physiol Cell Physiol, 2020,318(5):C848-C856. DOI: 10.1152/ajpcell.00041.2020 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Han YD , Bai Y , Yan XL ,et al. Co-transplantation of exosomes derived from hypoxia-preconditioned adipose mesenchymal stem cells promotes neovascularization and graft survival in fat grafting[J]. Biochem Biophys Res Commun, 2018,497(1):305-312. DOI: 10.1016/j.bbrc.2018.02.076 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Yu Q , Wang D , Wen X ,et al. Adipose-derived exosomes protect the pulmonary endothelial barrier in ventilator-induced lung injury by inhibiting the TRPV4/Ca 2+ signaling pathway [J]. Am J Physiol Lung Cell Mol Physiol, 2020,318(4):L723-L741. DOI: 10.1152/ajplung.00255.2019 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Bai Y , Han YD , Yan XL ,et al. Adipose mesenchymal stem cell-derived exosomes stimulated by hydrogen peroxide enhanced skin flap recovery in ischemia-reperfusion injury[J]. Biochem Biophys Res Commun, 2018,500(2):310-317. DOI: 10.1016/j.bbrc.2018.04.065 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Rochette L , Mazini L , Malka G ,et al. The crosstalk of adipose-derived stem cells (ADSC), oxidative stress, and inflammation in protective and adaptive responses[J]. Int J Mol Sci, 2020,21(23):9262. DOI: 10.3390/ijms21239262 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Kruger MJ , Conradie MM , Conradie M ,et al. ADSC-conditioned media elicit an ex vivo anti-inflammatory macrophage response[J]. J Mol Endocrinol, 2018,61(4):173-184. DOI: 10.1530/JME-18-0078 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Jiang M , Wang H , Jin M ,et al. Exosomes from MiR-30d-5p-ADSCs reverse acute ischemic stroke-induced, autophagy-mediated brain injury by promoting M2 microglial/macrophage polarization[J]. Cell Physiol Biochem, 2018,47(2):864-878. DOI: 10.1159/000490078 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Zhao H , Shang Q , Pan Z ,et al. Exosomes from adipose-derived stem cells attenuate adipose inflammation and obesity through polarizing M2 macrophages and beiging in white adipose tissue[J]. Diabetes, 2018,67(2):235-247. DOI: 10.2337/db17-0356 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Liu Z , Xu Y , Wan Y ,et al. Exosomes from adipose-derived mesenchymal stem cells prevent cardiomyocyte apoptosis induced by oxidative stress[J]. Cell Death Discov, 2019,5:79. DOI: 10.1038/s41420-019-0159-5 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Bai X , Li J , Li L ,et al. Extracellular vesicles from adipose tissue-derived stem cells affect notch-miR148a-3p axis to regulate polarization of macrophages and alleviate sepsis in mice[J]. Front Immunol, 2020,11:1391. DOI: 10.3389/fimmu.2020.01391 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Deng S , Zhou X , Ge Z ,et al. Exosomes from adipose-derived mesenchymal stem cells ameliorate cardiac damage after myocardial infarction by activating S1P/SK1/S1PR1 si gnaling and promoting macrophage M2 polarization [J]. Int J Biochem Cell Biol, 2019,114:105564. DOI: 10.1016/j.biocel.2019.105564 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Shen K , Jia Y , Wang X ,et al. Exosomes from adipose-derived stem cells alleviate the inflammation and oxidative stress via regulating Nrf2/HO-1 axis in macrophages[J]. Free Radic Biol Med, 2021,165:54-66. DOI: 10.1016/j.freeradbiomed.2021.01.023 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Wei P , Zhong C , Yang X ,et al. Exosomes derived from human amniotic epithelial cells accelerate diabetic wound healing via PI3K-AKT-mTOR-mediated promotion in angiogenesis and fibroblast function[J/OL]. Burns Trauma, 2020,8:tkaa020[2022-02-24]. https://doi.org/10.1093/burnst/tkaa020. DOI: 10.1093/burnst/tkaa020 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Potter DA , Veitch D , Johnston GA . Scarring and wound healing[J]. Br J Hosp Med (Lond), 2019,80(11):C166-C171. DOI: 10.12968/hmed.2019.80.11.C166 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Bacakova L , Zarubova J , Travnickova M ,et al. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells - a review[J]. Biotechnol Adv, 2018,36(4):1111-1126. DOI: 10.1016/j.biotechadv.2018.03.011 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Meldolesi J . Exosomes and ectosomes in intercellular communication[J]. Curr Biol, 2018,28(8):R435-R444. DOI: 10.1016/j.cub.2018.01.059 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Pegtel DM , Gould SJ . Exosomes[J]. Annu Rev Biochem, 2019,88:487-514. DOI: 10.1146/annurev-biochem-013118-111902 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Koritzinsky EH , Street JM , Star RA ,et al. Quantification of exo somes [J]. J Cell Physiol, 2017,232(7):1587-1590. DOI: 10.1002/jcp.25387 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Xing X , Han S , Cheng G ,et al. Proteomic analysis of exosomes from adipose-derived mesenchymal stem cells: a novel therapeutic strategy for tissue injury[J]. Biomed Res Int, 2020,2020:6094562. DOI: 10.1155/2020/6094562 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Zhang W , Bai X , Zhao B ,et al. Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway[J]. Exp Cell Res, 2018,370(2):333-342. DOI: 10.1016/j.yexcr.2018.06.035 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Caputa G , Flachsmann LJ , Cameron AM . Macrophage metabolism: a wound-healing perspective[J]. Immunol Cell Biol, 2019,97(3):268-278. DOI: 10.1111/imcb.12237 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Kim SY , Nair MG . Macrophages in wound healing: activation and plasticity[J]. Immunol Cell Biol, 2019,97(3):258-267. DOI: 10.1111/imcb.12236 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Hamidzadeh K , Christensen SM , Dalby E ,et al. Macrophages and the recovery from acute and chronic inflammation[J]. Annu Rev Physiol, 2017,79:567-592. DOI: 10.1146/annurev-physiol-022516-034348 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Shang Y , Sun Y , Xu J ,et al. Exosomes from mmu_circ_0001359-Modified ADSCs attenuate airway remodeling by enhancing FoxO1 signaling-mediated M2-like macrophage activation[J]. Mol Ther Nucleic Acids, 2020,19:951-960. DOI: 10.1016/j.omtn.2019.10.049 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Luo Q , Guo D , Liu G ,et al. Exosomes from MiR-126-over expressing adscs are therapeutic in relieving acute myocardial ischaemic injury [J]. Cell Physiol Biochem, 2017,44(6):2105-2116. DOI: 10.1159/000485949 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Feng N , Jia Y , Huang X . Exosomes from adipose-derived stem cells alleviate neural injury caused by microglia activation via suppressing NF-κB and MAPK pathway[J]. J Neuroimmunol, 2019,334:576996. DOI: 10.1016/j.jneuroim.2019.576996 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
Kloc M , Ghobrial RM , Wosik J ,et al. Macrophage functions in wound healing[J]. J Tissue Eng Regen Med, 2019,13(1):99-109. DOI: 10.1002/term.2772 .
返回引文位置Google Scholar
百度学术
万方数据
[40]
Eming SA , Wynn TA , Martin P . Inflammation and metabolism in tissue repair and regeneration[J]. Science, 2017,356(6342):1026-1030. DOI: 10.1126/science.aam7928 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
胡大海,Email: nc.defudabe.ummfiahduh
B

沈括:酝酿和设计实验,起草文章;王许杰:实施研究,起草文章;刘开拓:采集数据;李少珲:采集数据和统计分析;李晋:分析、解释数据;张锦鑫:实施研究;王洪涛:对文章的知识性内容作批评性审阅,获取研究经费和指导支持工作;胡大海:对文章的知识性内容作批评性审阅,负责行政、技术或材料支持

C

沈括, 王许杰, 刘开拓, 等. 人脂肪间充质干细胞外泌体对小鼠RAW264.7细胞的炎症反应和小鼠全层皮肤缺损创面愈合的影响[J]. 中华烧伤与创面修复杂志, 2022, 38(3): 215-226. DOI: 10.3760/cma.j.cn501120-20201116-00477.

D
所有作者均声明不存在利益冲突
E
国家自然科学基金重点项目 (81530064)
国家自然科学基金面上项目 (81971835,81772071)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号