专家述评
ENGLISH ABSTRACT
关注免疫炎症调控在青光眼全程诊疗中的作用
吴建
苏文如
卓业鸿
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20220314-00104
New paradigms of immune regulation in glaucoma during the whole clinical process
Wu Jian
Su Wenru
Zhuo Yehong
Authors Info & Affiliations
Wu Jian
Zhongshan Ophthalmic Center, Sun Yat-sen University, State Key Laboratory of Ophthalmology, Guangzhou 510060, China
Su Wenru
Zhongshan Ophthalmic Center, Sun Yat-sen University, State Key Laboratory of Ophthalmology, Guangzhou 510060, China
Zhuo Yehong
Zhongshan Ophthalmic Center, Sun Yat-sen University, State Key Laboratory of Ophthalmology, Guangzhou 510060, China
·
DOI: 10.3760/cma.j.cn115989-20220314-00104
0
0
0
0
0
0
PDF下载
APP内阅读
摘要

青光眼是由于病理性眼压升高引起视神经结构和功能损害而导致的不可逆性致盲眼病,具有多因性、强异质性的特点,长期以来降低并控制眼压以减轻视神经损害是青光眼主要的治疗策略。然而,临床实践中发现,尽管部分青光眼患者眼压得到控制,但视神经损害仍持续进展,因此非眼压依赖性的继发视神经损害仍为青光眼发生和发展病理机制中亟需解决的瓶颈问题和研究热点。随着分子生物学研究技术的不断进步,医学基础研究领域已取得突破性进展,青光眼患者缓解局部免疫炎症反应可促进部分视觉恢复。但是由于目前尚无标志性临床应用成果,因此重视基础和临床研究相结合,促进成果转化为目前当务之急。研究者及眼科医师应从青光眼-免疫炎症理论出发理解眼部免疫稳态的重要性,关注眼脑之间生理病理过程的相互关联及全视路的病程进展,充分理解和有效利用新的生物学研究技术为青光眼致病机制研究带来的机遇与启示,进而为全临床青光眼诊疗方案的制定提供指导作用。

青光眼;视神经损伤;视网膜神经节细胞;免疫调节
ABSTRACT

Glaucoma is an irreversible blinding eye disease caused by the structural and functional damage of optic nerve induced by pathological increase of intraocular pressure (IOP), characterized by multiple causes and strong heterogeneity.The control of IOP to reduce the risk of optic damage has been the main therapeutic strategy of glaucoma for many years.However, in clinical experience, some patients show progress of optic nerve damage despite the effectively controlled IOP, the mechanism of non-IOP-dependent secondary damage is still an urgent problem to be solved and a research hotspot in the pathogenesis of glaucoma.With the continuous innovation of molecular biological technology, breakthroughs have been made in the field of basic research.Partial visual recovery can be boosted by alleviating local immune and inflammatory responses.Due to a lack of symbolic clinical application results, it has become an immediate priority to attach importance to the combination of basic clinical research and facilitate the transformation of results.Starting from the theory of glaucoma-immune inflammation, understanding the importance of the immune homeostasis of eyes, paying close attention to the linkage of eyes and brain in physiopathological process and the progression of diseases in the whole visual pathway, and fully understanding and effectively making good use of the opportunities and implications brought by new techniques will have significant effect in formulating clinical diagnosis and treatment plans.

Glaucoma;Optic nerve injuries;Retinal ganglion cells;Immunoregulation
Zhuo Yehong, Email: nc.defudabe.usys.liamhyouhz
引用本文

吴建,苏文如,卓业鸿. 关注免疫炎症调控在青光眼全程诊疗中的作用[J]. 中华实验眼科杂志,2022,40(04):289-293.

DOI:10.3760/cma.j.cn115989-20220314-00104

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
当前,人口老龄化已成为世界范围内焦点问题,作为年龄相关性眼病,青光眼近年来发病率也呈上升趋势。据估计,至2040年全球青光眼患者总计约1.118亿人 [ 1 , 2 ]。目前青光眼的临床治疗目标仍然是将眼压控制在合理范围内,但临床实践中发现,部分患者有效控制至靶眼压后其视神经损害仍持续进展,提示除眼压外还有其他因素参与青光眼的病理过程,强调了青光眼综合管理的重要性和必要性。随着分子生物学研究技术的进步和革新,研究人员意识到青光眼患者的视神经损伤机制除经典的机械损伤学说和血液流变学学说外,氧化应激、线粒体功能障碍、胶质细胞激活、神经炎症等免疫调节反应生物学过程也共同驱动疾病进程,成为近年来青光眼致病机制的热议话题。目前已有基础及临床研究证据表明,抑制青光眼的过度炎症反应可挽救部分视网膜神经节细胞(retinal ganglion cells,RGCs)的生存和活性,进而减缓青光眼性视神经病变的进展。因此,临床医生应充分理解青光眼病理过程中涉及的眼部免疫炎症反应机制,探讨青光眼免疫治疗的新途径和新靶点。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Tham YC Li X Wong TY et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040:a systematic review and meta-analysis[J]Ophthalmology 2014121(11)∶2081-2090. DOI: 10.1016/j.ophtha.2014.05.013 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Harasymowycz P Birt C Gooi P et al. Medical management of glaucoma in the 21st century from a canadian persp ective [J/OL]J Ophthalmol 201620166509809[2022-03-01]https://pubmed.ncbi.nlm.nih.gov/27895937/. DOI: 10.1155/2016/6509809 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Vecino E Rodriguez FD Ruzafa N et al. Glia-neuron interactions in the mammalian retina[J]Prog Retin Eye Res 2016511-40. DOI: 10.1016/j.preteyeres.2015.06.003 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Choi HJ Sun D Jakobs TC . Astrocytes in the optic nerve head express putative mechanosensitive channels[J]Mol Vis 201521749-766.
返回引文位置Google Scholar
百度学术
万方数据
[5]
Albalawi F Lu W Beckel JM et al. The P2X7 receptor primes IL-1β and the NLRP3 inflammasome in astrocytes exposed to mechanical strain[J/OL]Front Cell Neurosci 201711227[2022-03-01]https://pubmed.ncbi.nlm.nih.gov/28848393/. DOI: 10.3389/fncel.2017.00227 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Pronin A Pham D An W et al. Inflammasome activation induces pyroptosis in the retina exposed to ocular hypertension injury[J/OL]Front Mol Neurosci 20191236[2022-03-01]https://pubmed.ncbi.nlm.nih.gov/30930743/. DOI: 10.3389/fnmol.2019.00036 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Cooper ML Collyer JW Calkins DJ . Astrocyte remodeling without gliosis precedes optic nerve axonopathy[J/OL]Acta Neuropathol Commun 20186(1)∶38[2021-03-03]https://pubmed.ncbi.nlm.nih.gov/29747701/. DOI: 10.1186/s40478-018-0542-0 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Carreras FJ Aranda CJ Porcel D et al. Expression of glucose transporters in the prelaminar region of the optic-nerve head of the pig as determined by immunolabeling and tissue culture[J/OL]PLoS One 201510(6)∶e0128516[2022-03-03]https://pubmed.ncbi.nlm.nih.gov/26030125/. DOI: 10.1371/journal.pone.0128516 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Saab AS Tzvetavona ID Trevisiol A et al. Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism[J]Neuron 201691(1)∶119-132. DOI: 10.1016/j.neuron.2016.05.016 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Fortune B Ma KN Gardiner SK et al. Peripapillary retinoschisis in glaucoma:association with progression and OCT signs of Müller cell involvement[J]Invest Ophthalmol Vis Sci 201859(7)∶2818-2827. DOI: 10.1167/iovs.18-24160 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Shestopalov VI Spurlock M Gramlich OW et al. Immune responses in the glaucomatous retina:regulation and dynamics[J/OL]Cells 202110(8)∶1973[2022-03-04]https://pubmed.ncbi.nlm.nih.gov/34440742/. DOI: 10.3390/cells10081973 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Hubens WHG Mohren RJC Liesenborghs I et al. The aqueous humor proteome of primary open angle glaucoma:an extensive review[J/OL]Exp Eye Res 2020197108077[2022-03-04]https://pubmed.ncbi.nlm.nih.gov/32470343/. DOI: 10.1016/j.exer.2020.108077 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Adav SS Wei J Terence Y et al. Proteomic analysis of aqueous humor from primary open angle glaucoma patients on drug treatment revealed altered complement activation cascade[J]J Proteome Res 201817(7)∶2499-2510. DOI: 10.1021/acs.jproteome.8b00244 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Chen H Cho KS Vu T et al. Commensal microflora-induced T cell responses mediate progressive neurodegeneration in glaucoma[J/OL]Nat Commun 20189(1)∶3209[2022-03-04]https://pubmed.ncbi.nlm.nih.gov/30097565/. DOI: 10.1038/s41467-018-05681-9 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Kuehn S Stellbogen M Noristani R et al. Systemic ocular antigen immunization leads only to a minor secondary immune response[J]J Neuroimmunol 2016293114-122. DOI: 10.1016/j.jneuroim.2016.02.017 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Yang X Zeng Q Barış M et al. Transgenic inhibition of astroglial NF-κB restrains the neuroinflammatory and neurodegenerative outcomes of experimental mouse glaucoma[J/OL]J Neuroinflammation 202017(1)∶252[2022-03-05]https://pubmed.ncbi.nlm.nih.gov/32859212/. DOI: 10.1186/s12974-020-01930-1 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Chi W Chen H Li F et al. HMGB1 promotes the activation of NLRP3 and caspase-8 inflammasomes via NF-κB pathway in acute glaucoma[J/OL]J Neuroinflammation 201512137[2022-03-05]https://pubmed.ncbi.nlm.nih.gov/26224068/. DOI: 10.1186/s12974-015-0360-2 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Chi W Li F Chen H et al. Caspase-8 promotes NLRP1/NLRP3 inflammasome activation and IL-1β production in acute glaucoma[J]Proc Natl Acad Sci U S A 2014111(30)∶11181-11186. DOI: 10.1073/pnas.1402819111 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Yang X Zeng Q Tezel G Regulation of distinct caspase-8 functions in retinal ganglion cells and astr oglia in experimental glaucoma [J/OL]Neurobiol Dis 2021150105258[2022-03-06]https://pubmed.ncbi.nlm.nih.gov/33434617/. DOI: 10.1016/j.nbd.2021.105258 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Liu Y Miao Q Yuan J et al. Ascl1 converts dorsal midbrain astrocytes into functional neurons in vivo [J]J Neurosci 201535(25)∶9336-9355. DOI: 10.1523/JNEUROSCI.3975-14.2015 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Jmaeff S Sidorova Y Nedev H et al. Small-molecule agonists of the RET receptor tyrosine kinase activate biased trophic signals that are influenced by the presence of GFRa1 co-receptors[J]J Biol Chem 2020295(19)∶6532-6542. DOI: 10.1074/jbc.RA119.011802 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Wu Z Parry M Hou XY et al. Gene therapy conversion of striatal astrocytes into GABAergic neurons in mouse models of Huntington ' s disease [J/OL]Nat Commun 202011(1)∶1105[2022-03-07]https://pubmed.ncbi.nlm.nih.gov/32107381/. DOI: 10.1038/s41467-020-14855-3 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Heijl A Leske MC Hyman L et al. Intraocular pressure reduction with a fixed treatment protocol in the Early Manifest Glaucoma Trial[J]Acta Ophthalmol 201189(8)∶749-754. DOI: 10.1111/j.1755-3768.2009.01852.x .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Casson RJ Chidlow G Crowston JG et al. Retinal energy metabolism in health and glaucoma[J/OL]Prog Retin Eye Res 202181100881[2022-03-07]https://pubmed.ncbi.nlm.nih.gov/32712136/. DOI: 10.1016/j.preteyeres.2020.100881 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Tezel G A broad perspective on the molecular regulation of retinal ganglion cell degeneration in glaucoma[J]Prog Brain Res 2020256(1)∶49-77. DOI: 10.1016/bs.pbr.2020.05.027 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Bader V Winklhofer KF . Mitochondria at the interface between neurodegeneration and neuroinflammation[J]Semin Cell Dev Biol 202099163-171. DOI: 10.1016/j.semcdb.2019.05.028 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Ma W Wong WT . Aging changes in retinal microglia and their relevance to age-related retinal disease[J]Adv Exp Med Biol 201685473-78. DOI: 10.1007/978-3-319-17121-0_11 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Yang XL van der Merwe Y Sims J et al. Age-related changes in eye,brain and visuomotor behavior in the DBA/2J mouse model of chronic glau coma [J/OL]Sci Rep 20188(1)∶4643[2022-03-07]https://pubmed.ncbi.nlm.nih.gov/29545576/. DOI: 10.1038/s41598-018-22850-4 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Liao C Xu J Chen Y et al. Retinal dysfunction in Alzheimer ' s disease and implications for biomarkers [J/OL]Biomolecules 202111(8)∶1215[2022-03-08]https://pubmed.ncbi.nlm.nih.gov/34439882/. DOI: 10.3390/biom11081215 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Czakó C Kovács T Ungvari Z et al. Retinal biomarkers for Alzheimer ' s disease and vascular cognitive impairment and dementia (VCID):implication for early diagnosis and prognosis [J]Geroscience 202042(6)∶1499-1525. DOI: 10.1007/s11357-020-00252-7 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Clarke LE Liddelow SA Chakraborty C et al. Normal aging induces A1-like astrocyte reactivity[J/OL]Proc Natl Acad Sci U S A 2018115(8)∶E1896-E1905[2022-03-08]https://pubmed.ncbi.nlm.nih.gov/29437957/. DOI: 10.1073/pnas.1800165115 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Margeta MA Letcher SM Igo RP Jret al. Association of APOE with primary open-angle glaucoma suggests a protective effect for APOE ε4[J/OL] Invest Ophthalmol Vis Sci 202061(8)∶3[2022-03-08]https://pubmed.ncbi.nlm.nih.gov/32614373/. DOI: 10.1167/iovs.61.8.3 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Tribble JR Harder JM Williams PA et al. Ocular hypertension suppresses homeostatic gene expression in optic nerve head microglia of DBA/2J mice[J/OL]Mol Brain 202013(1)∶81[2022-03-09]https://pubmed.ncbi.nlm.nih.gov/32450896/. DOI: 10.1186/s13041-020-00603-7 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Ghosh S Shang P Yazdankhah M et al. Activating the AKT2-nuclear factor-κB-lipocalin-2 axis elicits an inflammatory response in age-related macular degeneration[J]J Pathol 2017241(5)∶583-588. DOI: 10.1002/path.4870 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Zhao N Xu X Jiang Y et al. Lipocalin-2 may produce damaging effect after cerebral ischemia by inducing astrocytes classical activation[J/OL]J Neuroinflammation 201916(1)∶168[2022-03-09]https://pubmed.ncbi.nlm.nih.gov/31426811/. DOI: 10.1186/s12974-019-1556-7 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Sitnilska V Enders P Cursiefen C et al. Association of imaging biomarkers and local activation of complement in aqueous humor of patients with early forms of age-related macular degeneration[J] Graefes Arch Clin Exp Ophth almol 2021259(3)∶623-632. DOI: 10.1007/s00417-020-04910-6 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Bosco A Anderson SR Breen KT et al. Complement C3-targeted gene therapy restricts onset and progression of neurodegeneration in chronic mouse glaucoma[J]Mol Ther 201826(10)∶2379-2396. DOI: 10.1016/j.ymthe.2018.08.017 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Reinehr S Gomes SC Gassel CJ et al. Intravitreal therapy against the complement factor C5 prevents retinal degeneration in an experimental autoimmune glaucoma model[J/OL]Front Pharmacol 2019101381[2022-03-09]https://pubmed.ncbi.nlm.nih.gov/31849650/. DOI: 10.3389/fphar.2019.01381 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
Lam DY Kaufman PL Gabelt BT et al. Neurochemical correlates of cortical plasticity after unilateral elevated intraocular pressure in a primate model of glaucoma[J]Invest Ophthalmol Vis Sci 200344(6)∶2573-2581. DOI: 10.1167/iovs.02-0779 .
返回引文位置Google Scholar
百度学术
万方数据
[40]
Lam D Jim J To E et al. Astrocyte and microglial activation in the lateral geniculate nucleus and visual cortex of glaucomatous and optic nerve transected primates[J]Mol Vis 2009152217-2229.
返回引文位置Google Scholar
百度学术
万方数据
[41]
Sapienza A Raveu AL Reboussin E et al. Bilateral neuroinflammatory processes in visual pathways induced by unilateral ocular hypertension in the rat[J/OL]J Neuroinflammation 20161344[2022-03-09]https://pubmed.ncbi.nlm.nih.gov/26897546/. DOI: 10.1186/s12974-016-0509-7 .
返回引文位置Google Scholar
百度学术
万方数据
[42]
Bariş M Tezel G Immunomodulation as a neuroprotective strategy for glaucoma treatment[J]Curr Ophthalmol Rep 20197(2)∶160-169.
返回引文位置Google Scholar
百度学术
万方数据
[43]
Wang J Valiente-Soriano FJ Nadal-Nicolás FM et al. MicroRNA regulation in an animal model of acute ocular hypertension[J/OL]Acta Ophthalmol 201795(1)∶e10-e21[2022-03-09]https://pubmed.ncbi.nlm.nih.gov/27535721/. DOI: 10.1111/aos.13227 .
返回引文位置Google Scholar
百度学术
万方数据
[44]
Peng H Sun YB Hao JL et al. Neuroprotective effects of overexpressed microRNA-200a on activation of glaucoma-related retinal glial cells and apoptosis of ganglion cells via downregulating FGF7-mediated MAPK signaling pathway[J]Cell Signal 201954179-190. DOI: 10.1016/j.cellsig.2018.11.006 .
返回引文位置Google Scholar
百度学术
万方数据
[45]
Vereecke L Beyaert R van Loo G The ubiquitin-editing enzyme A20 (TNFAIP3) is a cent ral regulator of immunopathology [J]Trends Immunol 200930(8)∶383-391. DOI: 10.1016/j.it.2009.05.007 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
卓业鸿,Email: nc.defudabe.usys.liamhyouhz
B
所有作者均声明不存在任何利益冲突
C
国家重点研发计划干细胞及转化研究重点专项项目 (2020YFA0112701)
国家自然科学基金项目 (82171057)
广州市科技计划项目 (202102010216)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号