综述
ENGLISH ABSTRACT
光相干断层扫描血管成像对青光眼视网膜微循环的评估
陈旭豪
洪颖 [综述]
张纯 [综述]
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20190926-00417
Assessment of retinal microcirculation alterations in glaucoma by optical coherence tomography angiography
Chen Xuhao
Hong Ying
Zhang Chun
Authors Info & Affiliations
Chen Xuhao
Department of Ophthalmology, Peking University Third Hospital, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Beijing 100191, China
Hong Ying
Department of Ophthalmology, Peking University Third Hospital, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Beijing 100191, China
Zhang Chun
Department of Ophthalmology, Peking University Third Hospital, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Beijing 100191, China
·
DOI: 10.3760/cma.j.cn115989-20190926-00417
0
0
0
0
0
0
PDF下载
APP内阅读
摘要

视网膜的微循环改变与青光眼密切相关。光相干断层扫描血管成像(OCTA)是一种无创检查,可同时提供视网膜以及其血管信息,对视网膜各层微循环的检测效果良好,近年被运用到青光眼的研究和监测中。放射状盘周毛细血管(RPC)密度与视网膜神经纤维层厚度呈正相关,因而在青光眼评估中尤为重要。OCTA对视网膜微循环改变的评估主要在视盘旁区和黄斑区。青光眼患者视盘旁区全层和RPC血管密度显著下降,其与视网膜神经纤维层厚度变薄以及视野缺损均匹配,并与疾病严重程度相关;黄斑区则呈现血管密度下降,无血管区面积显著增大的趋势。对比不同类型和阶段的青光眼,晚期青光眼以及正常眼压性青光眼的OCTA改变更显著。OCTA结果可受到高度近视和眼压变化的影响,视盘旁区的OCTA改变对青光眼的诊断价值更高。总体来看,OCTA可以为青光眼视网膜微循环评估提供新的技术手段。本文从视网膜微循环的OCTA表现以及青光眼视网膜微循环的OCTA图像改变,包括青光眼视盘旁区微循环OCTA改变、黄斑区微循环OCTA改变、OCTA评估青光眼黄斑区与视盘旁区微循环的影响因素及诊断价值比较几个方面就OCTA对青光眼视网膜微循环的评估研究进展进行综述。

青光眼/诊断;视网膜;微循环;血管密度;光相干断层扫描
ABSTRACT

Microcirculation alterations of the human retina are of significant relevance with glaucoma.Optical coherence tomography angiography (OCTA) is a non-invasive examination that provides signals of the retina and retinal microcirculation.It is currently widely used in research and screening for glaucoma due to its effective detection of each layer in the retinal microcirculation.Vessel density of radial peripapillary capillary (RPC) is positively correlated with the retinal nerve fiber layer thickness, which is crucial in the assessment of glaucoma.Peripapillary region and macula are regions of interest in OCTA analysis for microcirculation.Vessel density of the whole retina and RPC in the peripapillary region decreases significantly, which matches the thinned retinal fiber layer thickness and visual field defects, and is relevant to the disease severity.As for the macular region, vessel density declines while the area of the foveal avascular zone increases.Greater changes in late-stage glaucoma and normal-tension glaucoma are detected by OCTA compared with other stages and types of glaucoma.OCTA imaging may be influenced by high myopia and intraocular pressure, and the peripapillary region is of greater diagnostic value than macula in microcirculation changes.In conclusion, OCTA can serve as a new technique for the assessment of retinal microcirculation in glaucoma.This review summarized the characteristics of retinal microcirculation in OCTA images and its change in peripapillary and macular region in glaucoma eyes.Influencing factors associated with peripapillary and macular microcirculation changes in OCTA images and evaluation of peripapillary and macular microcirculation in glaucoma by OCTA and their diagnostic values were reviewed.

Glaucoma/diagnosis;Retina;Microcirculation;Vessel density;Tomography, optical coherence
Zhang Chun, Email: mocdef.oabohay1cgnahz
引用本文

陈旭豪,洪颖,张纯. 光相干断层扫描血管成像对青光眼视网膜微循环的评估[J]. 中华实验眼科杂志,2022,40(04):371-377.

DOI:10.3760/cma.j.cn115989-20190926-00417

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
青光眼是全球主要的不可逆性致盲眼病之一,据统计,2015年我国青光眼预计的总体患病率为2.58%,且预计2050年会达到3.48% [ 1 ],而在世界范围内,40~80岁人群青光眼的患病率约为3.54% [ 2 ],因此早期发现青光眼和对疾病进展进行监测显得尤为重要。目前,机械压迫学说是青光眼进展的主要学说,而血流因素作为主要的非压力依赖原因越来越被重视。全身或局部的血流改变均可能引起青光眼的损害 [ 3 ],而新近研究逐渐聚焦于眼底的微循环病变。随着光相干断层扫描血管成像(optical coherence tomography angiography,OCTA)的引入,我们能对眼球壁各个层面的微循环进行更为清楚的检测和判断。OCTA以光相干断层扫描(optical coherence tomography,OCT)为基础,通过对组织内部物体运动产生的信号波动进行处理,进而对血管进行成像 [ 4 ]。作为一种非侵入性的操作,OCTA的适用人群更广,可对局部进行重复扫描,被用于评价视盘、视盘旁视网膜、黄斑和脉络膜等深部结构的微循环 [ 5 ]。采用OCTA对青光眼和健康人群视盘旁和黄斑区的视网膜血管密度进行评价,发现有显著差异 [ 6 , 7 , 8 , 9 , 10 ],提示OCTA在青光眼微循环形态评价中具有重要价值。OCTA的结果与青光眼的类型及检查指标相关 [ 11 , 12 ],本文将阐述视网膜的微循环,以OCTA为手段,从不同部位及形态对青光眼的视网膜微循环改变进行总结。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Song P Wang J Bucan K et al. National and subnational prevalence and burden of glaucoma in China:a systematic analysis[J/OL]J Glob Health 20177(2)∶020705[2021-09-28]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5737099/. DOI: 10.7189/jogh.07.020705 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Tham YC Li X Wong TY et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040:a systematic review and meta-analysis[J]Ophthalmology 2014121(11)∶2081-2090. DOI: 10.1016/j.ophtha.2014.05.013 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
田佳鑫王宁利原发性开角型青光眼与血流异常的关系[J]中华实验眼科杂志 201836(8)∶643-648. DOI: 10.3760/cma.j.issn.2095-0160.2018.08.014 .
返回引文位置Google Scholar
百度学术
万方数据
Tian JX Wang NL . The relationship between primary open angle glaucoma and blood flow abnormalities[J]Chin J Exp Ophthalmol 201836(8)∶643-648. DOI: 10.3760/cma.j.issn.2095-0160.2018.08.014 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[4]
Kashani AH Chen CL Gahm JK et al. Optical coherence tomography angiography:a comprehensive review of current methods and clinical applications[J]Prog Retin Eye Res 20176066-100. DOI: 10.1016/j.preteyeres.2017.07.002 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Bojikian KD Chen PP Wen JC . Optical coherence tomography angiography in glaucoma[J]Curr Opin Ophthalmol 201930(2)∶110-116. DOI: 10.1097/ICU.0000000000000554 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Mammo Z Heisler M Balaratnasingam C et al. Quantitative optical coherence tomography angiography of radial peripapillary capillaries in glaucoma,glaucoma suspect,and normal eyes[J]Am J Ophthalmol 201617041-49. DOI: 10.1016/j.ajo.2016.07.015 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Kim SB Lee EJ Han JC et al. Comparison of peripapillary vessel density between preperimetric and perimetric glaucoma evaluated by OCT-angiography[J/OL]PLoS One 201712(8)∶e0184297[2021-09-28]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5578657/. DOI: 10.1371/journal.pone.0184297 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Chen HS Liu CH Wu WC et al. Optical coherence tomography angiography of the superficial microvasculature in the macular and peripapillary areas in glaucomatous and healthy eyes[J]Invest Ophthalmol Vis Sci 201758(9)∶3637-3645. DOI: 10.1167/iovs.17-21846 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Zivkovic M Dayanir V Kocaturk T et al. Foveal avascular zone in normal tension glaucoma measured by optical coherence tomography angiography[J/OL]Biomed Res Int 201720173079141[2021-09-25]https://pubmed.ncbi.nlm.nih.gov/29392131/. DOI: 10.1155/2017/3079141 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Shoji T Zangwill LM Akagi T et al. Progressive macula vessel density loss in primary open-angle glaucoma:a longitudinal study[J]Am J Ophthalmol 2017182107-117. DOI: 10.1016/j.ajo.2017.07.011 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
叶鳞泓袁晴邵毅光学相干断层扫描血管造影在青光眼中的应用[J]中华眼视光学与视觉科学杂志 201921(7)∶557-560. DOI: 10.3760/cma.j.issn.1674-845X.2019.07.013 .
返回引文位置Google Scholar
百度学术
万方数据
Ye LH Yuan Q Shao Y The application of optical coherence tomography angiography in glaucoma[J]Chin J Optom Ophthalmol Vis Sci 201921(7)∶557-560. DOI: 10.3760/cma.j.issn.1674-845X.2019.07.013 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[12]
曲乐杨瑾相干光断层扫描血管成像辅助青光眼诊断与评估[J]国际眼科纵览 201842(6)∶418-422. DOI: 10.3760/cma.j.issn.1673-5803.2018.06.013 .
返回引文位置Google Scholar
百度学术
万方数据
Qu L Yang J The application of optical coherence tomography angiography for diagnosis and evaluation of glaucoma[J]Int Rev Ophthalmol 201842(6)∶418-422. DOI: 10.3760/cma.j.issn.1673-5803.2018.06.013 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[13]
Henkind P Radial peripapillary capillaries of the retina.I.Anatomy:human and comparative[J]Br J Ophthalmol 196751(2)∶115-123. DOI: 10.1136/bjo.51.2.115 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Weinhaus RS Burke JM Delori FC et al. Comparison of fluorescein angiography with microvascular anatomy of macaque retinas[J]Exp Eye Res 199561(1)∶1-16. DOI: 10.1016/s0014-4835(95)80053-0 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Spaide RF Klancnik JM Jr Cooney MJ . Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography[J]JAMA Ophthalmol 2015133(1)∶45-50. DOI: 10.1001/jamaophthalmol.2014.3616 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Yu PK Cringle SJ Yu DY . Correlation between the radial peripapillary capillaries and the retinal nerve fibre layer in the normal human retina[J]Exp Eye Res 201412983-92. DOI: 10.1016/j.exer.2014.10.020 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Tan PE Balaratnasingam C Xu J et al. Quantitative comparison of retinal capillary images derived by speckle variance optical coherence tomography with histology[J]Invest Ophthalmol Vis Sci 201556(6)∶3989-3996. DOI: 10.1167/iovs.14-15879 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Yu PK Balaratnasingam C Xu J et al. Label-free density measurements of radial peripapillary capillaries in the human retina[J/OL]PLoS One 201510(8)∶e0135151[2021-09-22]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4529151/. DOI: 10.1371/journal.pone.0135151 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Mase T Ishibazawa A Nagaoka T et al. Radial peripapillary capillary network visualized using wide-field montage optical coherence tomography angiography[J]Invest Ophthalmol Vis Sci 201657(9)∶OCT504-OCT510. DOI: 10.1167/iovs.15-18877 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Campbell JP Zhang M Hwang TS et al. Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography[J/OL]Sci Rep 2017742201[2021-09-27]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5301488/. DOI: 10.1038/srep42201 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Mansoori T Sivaswamy J Gamalapati JS et al. Measurement of radial peripapillary capillary density in the normal human retina using optical coherence tomography angiography[J]J Glaucoma 201726(3)∶241-246. DOI: 10.1097/IJG.0000000000000594 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Takayama K Ooto S Hangai M et al. High-resolution imaging of the retinal nerve fiber layer in normal eyes using adaptive optics scanning laser ophthalmoscopy[J/OL]PLoS One 20127(3)∶e33158[2021-09-27]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3299751/. DOI: 10.1371/journal.pone.0033158 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Liu L Jia Y Takusagawa HL et al. Optical coherence tomography angiography of the peripapillary retina in glaucoma[J]JAMA Ophthalmol 2015133(9)∶1045-1052. DOI: 10.1001/jamaophthalmol.2015.2225 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Lee EJ Lee KM Lee SH et al. OCT angiography of the peripapillary retina in primary open-angle glaucoma[J]Invest Ophthalmol Vis Sci 201657(14)∶6265-6270. DOI: 10.1167/iovs.16-20287 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Zhang S Wu C Liu L et al. Optical coherence tomography angiography of the peripapillary retina in primary angle-closure glaucoma[J]Am J Ophthalmol 2017182194-200. DOI: 10.1016/j.ajo.2017.07.024 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Xu H Zhai R Zong Y et al. Comparison of retinal microvascular changes in eyes with high-tension glaucoma or normal-tension glaucoma:a quantitative optic coherence tomography angiographic study[J]Graefe's Arch Clin Exp Ophthalmol 2018256(6)∶1179-1186. DOI: 10.1007/s00417-018-3930-z .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Liu L Edmunds B Takusagawa HL et al. Projection-resolved optical coherence tomography angiography of the peripapillary retina in glaucoma[J]Am J Ophthalmol 201920799-109. DOI: 10.1016/j.ajo.2019.05.024 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Richter GM Sylvester B Chu Z et al. Peripapillary microvasculature in the retinal nerve fiber layer in glaucoma by optical coherence tomography angiography:focal structural and functional correlations and diagnostic performance[J]Clin Ophthalmol 2018122285-2296. DOI: 10.2147/OPTH.S179816 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Rao HL Pradhan ZS Weinreb RN et al. Relationship of optic nerve structure and function to peripapillary vessel density measurements of optical coherence tomography angiography in glaucoma[J]J Glaucoma 201726(6)∶548-554. DOI: 10.1097/IJG.0000000000000670 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Geyman LS Garg RA Suwan Y et al. Peripapillary perfused capillary density in primary open-angle glaucoma across disease stage:an optical coherence tomography angiography study[J]Br J Ophthalmol 2017101(9)∶1261-1268. DOI: 10.1136/bjophthalmol-2016-309642 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Yarmohammadi A Zangwill LM Diniz-Filho A et al. Relationship between optical coherence tomography angiography vessel density and severity of visual field loss in glaucoma[J]Ophthalmology 2016123(12)∶2498-2508. DOI: 10.1016/j.ophtha.2016.08.041 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Mansoori T Sivaswamy J Gamalapati JS et al. Radial peripapillary capillary density measurement using optical coherence tomography angiography in early glaucoma[J]J Glaucoma 201726(5)∶438-443. DOI: 10.1097/IJG.0000000000000649 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Akagi T Iida Y Nakanishi H et al. Microvascular density in glaucomatous eyes with hemifield visual field defects:an optical coherence tomography angiography study[J]Am J Ophthalmol 2016168237-249. DOI: 10.1016/j.ajo.2016.06.009 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Chen CL Bojikian KD Wen JC et al. Peripapillary retinal nerve fiber layer vascular microcirculation in eyes with glaucoma and single-hemifield visual field loss[J]JAMA Ophthalmol 2017135(5)∶461-468. DOI: 10.1001/jamaophthalmol.2017.0261 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Jeon SJ Park HL Park CK . Effect of macular vascular density on central visual function and macular structure in glaucoma patients[J/OL]Sci Rep 20188(1)∶16009[2021-08-23]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6207782/. DOI: 10.1038/s41598-018-34417-4 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
许欢孔祥梅原发性开角型青光眼黄斑区视网膜微循环和结构损伤的研究[J]中华眼科杂志 201753(2)∶98-103. DOI: 10.3760/cma.j.issn.0412-4081.2017.02.006 .
返回引文位置Google Scholar
百度学术
万方数据
Xu H Kong XM . Study of retinal microvascular perfusion alteration and structural damage at macular region in primary open-angle glaucoma patients[J]Chin J Ophthalmol 201753(2)∶98-103. DOI: 10.3760/cma.j.issn.0412-4081.2017.02.006 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[37]
Lee CY Liu CH Chen HC et al. Correlation between basal macular circulation and following glaucomatous damage in progressed high-tension and normal-tension glaucoma[J]Ophthalmic Res 201962(1)∶46-54. DOI: 10.1159/000499695 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Wang Q Chan S Yang JY et al. Vascular density in retina and choriocapillaris as measured by optical coherence tomography angiography[J]Am J Ophthalmol 201616895-109. DOI: 10.1016/j.ajo.2016.05.005 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
Tan CS Lim LW Chow VS et al. Optical coherence tomography angiography evaluation of the parafoveal vasculature and its relationship with ocular factors[J]Invest Ophthalmol Vis Sci 201657(9)∶OCT224-OCT234. DOI: 10.1167/iovs.15-18869 .
返回引文位置Google Scholar
百度学术
万方数据
[40]
Kwon J Choi J Shin JW et al. Alterations of the foveal avascular zone measured by optical coherence tomography angiography in glaucoma patients with central visual field defects[J]Invest Ophthalmol Vis Sci 201758(3)∶1637-1645. DOI: 10.1167/iovs.16-21079 .
返回引文位置Google Scholar
百度学术
万方数据
[41]
Kwon J Choi J Shin JW et al. An optical coherence tomography angiography study of the relationship between foveal avascular zone size and retinal vessel density[J]Invest Ophthalmol Vis Sci 201859(10)∶4143-4153. DOI: 10.1167/iovs.18-24168 .
返回引文位置Google Scholar
百度学术
万方数据
[42]
Philip S Najafi A Tantraworasin A et al. Macula vessel density and foveal avascular zone parameters in exfoliation glaucoma compared to primary open-angle glaucoma[J]Invest Ophthalmol Vis Sci 201960(4)∶1244-1253. DOI: 10.1167/iovs.18-25986 .
返回引文位置Google Scholar
百度学术
万方数据
[43]
Sung MS Lee TH Heo H et al. Association between optic nerve head deformation and retinal microvasculature in high myopia[J]Am J Ophthalmol 201818881-90. DOI: 10.1016/j.ajo.2018.01.033 .
返回引文位置Google Scholar
百度学术
万方数据
[44]
Suwan Y Fard MA Geyman LS et al. Association of myopia with peripapillary perfused capillary density in patients with glaucoma:an optical coherence tomography angiography study[J]JAMA Ophthalmol 2018136(5)∶507-513. DOI: 10.1001/jamaophthalmol.2018.0776 .
返回引文位置Google Scholar
百度学术
万方数据
[45]
Shin JW Kwon J Lee J et al. Relationship between vessel density and visual field sensitivity in glaucomatous eyes with high myopia[J/OL]Br J Ophthalmol 2018 10.1136/bjophthalmol-2018-312085 [2021-09-26]https://pubmed.ncbi.nlm.nih.gov/29858182/. DOI:.
返回引文位置Google Scholar
百度学术
万方数据
[46]
Mansouri K Rao HL Hoskens K et al. Diurnal variations of peripapillary and macular vessel density in glaucomatous eyes using optical coherence tomography angiography[J]J Glaucoma 201827(4)∶336-341. DOI: 10.1097/IJG.0000000000000914 .
返回引文位置Google Scholar
百度学术
万方数据
[47]
Iwase T Akahori T Yamamoto K et al. Evaluation of optic nerve head blood flow in response to increase of intraocular pressure[J/OL]Sci Rep 20188(1)∶17235[2021-09-26]https://pubmed.ncbi.nlm.nih.gov/30467382/. DOI: 10.1038/s41598-018-35683-y .
返回引文位置Google Scholar
百度学术
万方数据
[48]
Ma ZW Qiu WH Zhou DN et al. Changes in vessel density of the patients with narrow antenior chamber after an acute intraocular pressure elevation observed by OCT angiography[J/OL]BMC Ophthalmol 201919(1)∶132[2021-09-26]https://pubmed.ncbi.nlm.nih.gov/31226955/. DOI: 10.1186/s12886-019-1146-6 .
返回引文位置Google Scholar
百度学术
万方数据
[49]
Wang X Chen J Kong X et al. Immediate changes in peripapillary retinal vasculature after intraocular pressure elevation-an optical coherence tomography angiography study[J]Curr Eye Res 202045(6)∶749-756. DOI: 10.1080/02713683.2019.1695843 .
返回引文位置Google Scholar
百度学术
万方数据
[50]
Zhang Q Jonas JB Wang Q et al. Optical coherence tomography angiography vessel density changes after acute intraocular pressure elevation[J/OL]Sci Rep 20188(1)∶6024[2021-09-28]https://pubmed.ncbi.nlm.nih.gov/29662112/. DOI: 10.1038/s41598-018-24520-x .
返回引文位置Google Scholar
百度学术
万方数据
[51]
Venkataraman ST Flanagan JG Hudson C Vascular reactivity of optic nerve head and retinal blood vessels in glaucoma—a review[J]Microcirculation 201017(7)∶568-581. DOI: 10.1111/j.1549-8719.2010.00045.x .
返回引文位置Google Scholar
百度学术
万方数据
[52]
Holló G Influence of large intraocular pressure reduction on peripapillary OCT vessel density in ocular hypertensive and glaucoma eyes[J/OL]J Glaucoma 201726(1)∶e7-e10[2021-09-28]https://pubmed.ncbi.nlm.nih.gov/27571444/. DOI: 10.1097/IJG.0000000000000527 .
返回引文位置Google Scholar
百度学术
万方数据
[53]
Ch'ng TW Gillmann K Hoskens K et al. Effect of surgical intraocular pressure lowering on retinal structures-nerve fibre layer,foveal avascular zone,peripapillary and macular vessel density:1 year results[J]Eye (Lond) 202034(3)∶562-571. DOI: 10.1038/s41433-019-0560-6 .
返回引文位置Google Scholar
百度学术
万方数据
[54]
Lommatzsch C Rothaus K Koch JM et al. Retinal perfusion 6 months after trabeculectomy as measured by optical coherence tomography angiography[J]Int Ophthalmol 201939(11)∶2583-2594. DOI: 10.1007/s10792-019-01107-7 .
返回引文位置Google Scholar
百度学术
万方数据
[55]
Kim JA Kim TW Lee EJ et al. Microvascular changes in peripapillary and optic nerve head tissues after trabeculectomy in primary open-angle glaucoma[J]Invest Ophthalmol Vis Sci 201859(11)∶4614-4621. DOI: 10.1167/iovs.18-25038 .
返回引文位置Google Scholar
百度学术
万方数据
[56]
Triolo G Rabiolo A Shemonski ND et al. Optical coherence tomography angiography macular and peripapillary vessel perfusion density in healthy subjects,glaucoma suspects,and glaucoma patients[J]Invest Ophthalmol Vis Sci 201758(13)∶5713-5722. DOI: 10.1167/iovs.17-22865 .
返回引文位置Google Scholar
百度学术
万方数据
[57]
Richter GM Chang R Situ B et al. Diagnostic performance of macular versus peripapillary vessel parameters by optical coherence tomography angiography for glaucoma[J/OL]Transl Vis Sci Technol 20187(6)∶21[2021-09-20]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6284470/. DOI: 10.1167/tvst.7.6.21 .
返回引文位置Google Scholar
百度学术
万方数据
[58]
王敏周瑶正确认识OCT血管成像技术的临床应用价值[J]中华实验眼科杂志 201634(12)∶1057-1060. DOI: 10.3760/cma.j.issn.2095-0160.2016.12.001 .
返回引文位置Google Scholar
百度学术
万方数据
Wang M Zhou Y Correctly understanding the clinical value of optical coherence tomography angiography[J]Chin J Exp Ophthalmol 201634(12)∶1057-1060. DOI: 10.3760/cma.j.issn.2095-0160.2016.12.001 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
备注信息
A
张纯,Email: mocdef.oabohay1cgnahz
B
所有作者均声明不存在利益冲突
C
国家自然科学基金项目 (81670851)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号