病毒学
ENGLISH ABSTRACT
基于CRISPR/Cas9技术的重组病毒HSV-2-EGFP的构建
苏文浩
任秀秀
赵婷婷
王轶男
李实实
黄秋芳
王晓杰
张晓焕
卫江波
作者及单位信息
·
DOI: 10.3760/cma.j.cn112309-20211021-00348
Construction of recombinant herpes simplex virus 2 expressing enhanced green fluorescent protein using CRISPR/Cas9
Su Wenhao
Ren Xiuxiu
Zhao Tingting
Wang Yinan
Li Shishi
Huang Qiufang
Wang Xiaojie
Zhang Xiaohuan
Wei Jiangbo
Authors Info & Affiliations
Su Wenhao
Laboratory of Herpes Virus, National Vaccine and Serum Institute, Beijing 101111, China
Ren Xiuxiu
Laboratory of Herpes Virus, National Vaccine and Serum Institute, Beijing 101111, China
Zhao Tingting
Laboratory of Herpes Virus, National Vaccine and Serum Institute, Beijing 101111, China
Wang Yinan
Laboratory of Herpes Virus, National Vaccine and Serum Institute, Beijing 101111, China
Li Shishi
Laboratory of Herpes Virus, National Vaccine and Serum Institute, Beijing 101111, China
Huang Qiufang
Laboratory of Herpes Virus, National Vaccine and Serum Institute, Beijing 101111, China
Wang Xiaojie
Laboratory of Herpes Virus, National Vaccine and Serum Institute, Beijing 101111, China
Zhang Xiaohuan
Laboratory of Herpes Virus, National Vaccine and Serum Institute, Beijing 101111, China
Wei Jiangbo
Laboratory of Herpes Virus, National Vaccine and Serum Institute, Beijing 101111, China
·
DOI: 10.3760/cma.j.cn112309-20211021-00348
820
67
0
0
2
1
PDF下载
APP内阅读
摘要

目的利用CRISPR/Cas9 (clustered, regularly interspaced, short palindromic repeat/CRISPR-associated nuclease 9)技术构建携带增强型绿色荧光蛋白(enhanced green fluorescent protein,EGFP)基因的单纯疱疹病毒2型(herpes simplex virus 2,HSV-2)。

方法利用CRISPR/Cas9技术对外源基因EGFP插入HSV-2基因组的策略进行探索,设计如下4种插入策略:(1)经典的同源重组修复模式,即环状双侧同源臂供体介导的基因敲入;(2)线性化单侧同源臂供体介导的基因敲入;(3)同源性非依赖介导的基因敲入;(4)利用稳表达Cas9和sgRNA的细胞株,进行环状双侧同源臂供体介导的基因敲入。

结果使用策略2、3和4均成功构建了携带EGFP的HSV-2,其中策略2的基因敲入效率最高,然后依次为策略3、策略4,策略1未观察到重组病毒的产生。蚀斑纯化后的重组病毒在7代内能稳定表达绿色荧光蛋白,并且和亲本株在Vero细胞上具有相似的生长特性。

结论线性化单侧同源臂供体介导的基因敲入效率更高,敲除载体的稳转细胞株能够有效地提高同源重组修复机制介导的基因敲入效率。

CRISPR/Cas9;单纯疱疹病毒2型;非同源末端连接;同源重组
ABSTRACT

ObjectiveTo construct a recombinant herpes simplex virus 2 (HSV-2) expressing enhanced green fluorescent protein (EGFP) using clustered, regularly interspaced, short palindromic repeat/CRISPR-associated nuclease 9 (CRISPR/Cas9) technology.

MethodsFour strategies for inserting exogenous EGFP gene into HSV-2 genome using CRISPR/Cas9 technology were designed: (1) conventional homology-directed repair: circular two homology arm donor-mediated gene knock-in; (2) linearized single homology arm donor-mediated gene knock-in; (3) homology-independent targeted integration; (4) conventional homology-directed repair-mediated by cell lines stably expressing Cas9 and sgRNA.

ResultsThe recombinant virus HSV-2-EGFP was successfully constructed based on the second, the third and the fourth strategies. The second strategy was the most efficient, followed by the third and the fourth strategies. The purified recombinant virus could stably express green fluorescent protein in seven passages and shared similar growth characteristics in Vero cells to the parental virus.

ConclusionsLinearized single homology arm donor could increase the efficiency of gene knock-in, and cell lines stably expressing Cas9 and sgRNA could increase the efficiency of gene knock-in mediated by homology-directed repair.

CRISPR/Cas9;Herpes simplex virus 2;Nonhomologous end-joining;Homology-directed repair
Wei Jiangbo, Email: mocdef.3ab614791obgnaijiew, Tel: 0086-10-52245045
引用本文

苏文浩,任秀秀,赵婷婷,等. 基于CRISPR/Cas9技术的重组病毒HSV-2-EGFP的构建[J]. 中华微生物学和免疫学杂志,2022,42(05):369-375.

DOI:10.3760/cma.j.cn112309-20211021-00348

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
单纯疱疹病毒(herpes simplex virus,HSV)是人类常见的重要病原体,属疱疹病毒科,α疱疹病毒亚科,单纯疱疹病毒属,基于型特异性抗原糖蛋白G(glycoprotein G)将HSV分为HSV-1和HSV-2两个血清型 [ 1 ]。HSV经呼吸道、口腔和生殖器黏膜以及破损皮肤侵入人体,HSV-2是生殖器疱疹的主要病原体。HSV-2由病毒基因组、衣壳、被膜、包膜4个结构组成,病毒基因组为双链DNA,长约150 kb,由两个独立且共价连接的独特长片段(unique long,UL)和短片段(unique short,US)组成;包裹病毒基因组的为一个二十面体衣壳,含162个衣壳颗粒,包括150个六邻体和12个五邻体;覆盖衣壳的约20个蛋白质被称为被膜,是疱疹病毒的特征性结构,可联络衣壳与包膜;最后病毒粒子被一层双层脂质包膜包裹,形成完整病毒颗粒,包膜中嵌有病毒进入宿主细胞所需的多种糖蛋白。HSV-2通常在生殖器黏膜启动宿主感染,不仅可以引起生殖器皮肤及黏膜出现典型的集簇性水疱、脓疱、溃疡等病变,也可引发宫颈炎、尿道炎,亦可伴有乏力、发热、头痛、淋巴结肿大等全身症状。HSV-2初次感染后,病毒颗粒可通过感觉神经末梢进入神经元,沿神经轴突逆行至骶神经节潜伏,处于潜伏状态的HSV-2可因多种因素刺激而反复激活。在HSV-2的临床治疗中,抗病毒药物如阿昔洛韦被广泛应用于抑制病毒的增殖,但不能清除病毒,也无法避免其传播及复发。目前还没有有效的疫苗来预防病毒的感染和传播。
利用荧光的示踪作用,构建带有增强型绿色荧光蛋白(enhanced green fluorescent protein, EGFP)等荧光报告基因的重组病毒,广泛用于研究病毒的复制及侵染等生命过程、构建可视化动物模型、筛选药物等。而HSV-2基因组较为庞大,在将报告基因插入其基因组时,对于病毒基因组的操作技术便成为关键环节。对该病毒基因组的操作先后经历了同源重组(homologous recombination) [ 2 ],细菌人工染色体技术(bacterial artificial chromosome, BAC) [ 3 ]和CRISPR/Cas9(clustered,regularly interspaced,short palindromic repeat/CRISPR-associated nuclease 9)技术 [ 4 , 5 , 6 ]。同源重组效率低,而将大型病毒基因组克隆到BAC上是一个耗时耗力的过程。近年来,CRISPR/Cas9技术以其简单灵活的特点在基因组编辑中发挥着越来越重要的作用。起初,在细菌基因组中发现成簇的重复回文序列,被命名为CRISPR;这类重复回文序列相邻的区域都存在着比较保守的基因,被命名为Cas gene(CRISPR-associated gene)。随后CRISPR/Cas被证明是一种细菌适应性免疫系统,细菌通过对入侵的外源DNA进行特异性识别,利用Cas蛋白进行剪切,从而达到对自身的免疫保护 [ 6 ]。目前,优化后的CRISPR/Cas9系统被广泛用于基因编辑,CRISPR/Cas9系统由向导RNA(single-guide RNA,sgRNA)和Cas9蛋白组成,sgRNA与Cas9蛋白结合形成核糖核蛋白复合体,识别靶序列并与其结合,进行切割产生双链DNA断裂 [ 7 ],靶向序列3′端必需存在PAM (protospacer adjacent motif)基序 [ 8 ],PAM基序通常由NGG三个碱基构成(N为任意碱基)。然后,这个DNA断裂可以通过基于机体的非同源末端连接修复(nonhomologous end-joining, NHEJ)和同源重组修复(homology-directed repair,HDR)两种机制修复,实现基因编辑。研究表明DNA病毒如HSV [ 4 , 5 , 6 ]、人乳头瘤病毒(human papilloma virus,HPV) [ 9 ]、乙型肝炎病毒(hepatitis B virus,HBV) [ 10 ]等可以通过CRISPR/Cas9进行基因组编辑,利用被感染细胞的DNA损伤修复机制达到预期效果。
本研究的目的是利用CRISPR/Cas9探索一种有效的构建重组HSV-2的策略,将外源基因EGFP插入到HSV-2 HG52株(NC_001798.2)基因组UL37与UL38之间的位置(从84 615 bp到85 096 bp的一个单拷贝DNA非编码区),经多轮蚀斑纯化筛选出重组HSV-2-EGFP,为开展HSV-2可视化动物模型及进一步疫苗疗效的评价奠定基础。
参考文献
[1]
Wales SQ , Smith CC , Wachsman M ,et al. Performance and use of a ribonucleotide reductase herpes simplex virus type-specific serological assay[J]. Clin Diagn Lab Immunol, 2004,11(1):42-49. DOI: 10.1128/CDLI.11.1.42-49.2004 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
蔡晓辉张钦宪. 单纯疱疹病毒Ⅰ型基因治疗载体的快速构建[J]. 中国组织工程研究与临床康复 2011,15(41):7701-7705. DOI: 10.3969/j.issn.1673-8225.2011.41.025 .
返回引文位置Google Scholar
百度学术
万方数据
Cai XH , Zhang QX . Rapid construction of herpes simplex virus type I vector for gene therapy[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2011,15(41):7701-7705. DOI: 10.3969/j.issn.1673-8225.2011.41.025 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[3]
Warming S , Costantino N , Court DL ,et al. Simple and highly efficient BAC recombineering using galK selection[J]. Nucleic Acids Res, 2005,33(4):e36. DOI: 10.1093/nar/gni035 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Bi YW , Sun L , Gao DD ,et al. High-efficiency targeted editing of large viral genomes by RNA-guided nucleases[J]. PLoS Pathog, 2014,10(5):e1004090. DOI: 10.1371/journal.ppat.1004090 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Van Diemen FR , Kruse EM , Hooykaas MJG ,et al. CRISPR/Cas9-mediated genome editing of herpes viruses limits productive and latent infections[J]. PLoS Pathog, 2016,12(6):e1005701. DOI: 10.1371/journal.ppat.1005701 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Karpov DS , Karpov VL , Klimova RR ,et al. A plasmid - expressed CRISPR/Cas9 system suppresses replication of HSV type I in a Vero cell culture[J]. Mol Bio (Mosk), 2019,53(1):91-100. DOI: 10.1134/S0026898419010051 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Doench JG , Hartenian E , Graham DB ,et al. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation[J]. Nat Biotechnol, 2014,32(12):1262-1267. DOI: 10.1038/nbt.3026 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Palermo G , Ricci CG , Fernando A ,et al. Protospacer adjacent motif-induced allostery activates CRISPR-Cas9[J]. J Am ChemSoc, 2017,139:16028-16031. DOI: 10.1021/jacs.7b05313 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Kennedy EM , Kornepati A , Goldstein M ,et al. Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease[J]. J Virol, 2014,88(20):11965-11972. DOI: 10.1128/JVI.01879-14 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Wang J , Xu ZW , Liu S ,et al. Dual gRNAs guided CRISPR/Cas9 system inhibits hepatitis B virus replication[J]. World J Gastroenterol, 2015,21(32):9554-9565. DOI: 10.3748/wjg.v21.i32.9554 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
朱娉慧罗群王曜峰. 同源重组及非同源末端连接修复途径介导的基因编辑:CRISPR技术的认知、应用及展望[J]. 生命科学 2018,30(9):1003-1009. DOI: 10.13376/j.cbls/2018120 .
返回引文位置Google Scholar
百度学术
万方数据
Zhu PH , Luo Q , Wang YF ,et al. CRISPR-induced genomic editing via homology-dependent and independent repair pathways: recent insights, applications and perspectives[J]. Chinese Bulletin of Life Sciences, 2018,30(9):97-103. DOI: 10.13376/j.cbls/2018120 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[12]
Suzuki K , Yamamoto M , Hernandez-Benitez R ,et al. Precise in vivo genome editing via single homology arm donor mediated intron-targeting gene integration for genetic disease correction [J]. Cell Research,29(10):804-819. DOI: 10.1038/s41422-019-0213-0 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Maruyama T , Dougan SK , Truttmann MC ,et al. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining[J]. Nat Biotechnol, 2015,33(5):538-542. DOI: 10.1038/nbt.3190 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Chu VT , Weber T , Wefers B ,et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9 induced precise gene editing in mammalian cells[J]. Nat Biotechnol, 2015,33(5):543-548. DOI: 10.1038/nbt.3198 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
卫江波,Email: mocdef.3ab614791obgnaijiew,电话:010-52245045
B

苏文浩:实验设计、实验操作、论文撰写;任秀秀、赵婷婷、王轶男、李实实、黄秋芳:实验操作、数据采集;王晓杰、张晓焕:解释数据、统计分析;卫江波:研究指导

C
所有作者声明无利益冲突
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号