综述
ENGLISH ABSTRACT
视皮层神经元结构可塑性研究进展
王珏
张伟
史学锋 [综述]
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20200415-00263
Research progress on the structural plasticity of neurons in the visual cortex
Wang Jue
Zhang Wei
Shi Xuefeng
Authors Info & Affiliations
Wang Jue
Clinical College of Ophthalmology of Tianjin Medical University, Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin 300020, China
Zhang Wei
Clinical College of Ophthalmology of Tianjin Medical University, Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin 300020, China
Shi Xuefeng
Clinical College of Ophthalmology of Tianjin Medical University, Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin 300020, China
·
DOI: 10.3760/cma.j.cn115989-20200415-00263
0
0
0
0
0
0
PDF下载
APP内阅读
摘要

视皮层发育过程中神经元结构会随着外界环境的变化做出适应性改变和调整,具有结构可塑性。视皮层神经元结构变化是视皮层经验依赖的可塑性变化的基础。这些结构改变主要包括突触之间的连接发生变化、树突棘的消失或增加、树突棘的更替及大小的变化、突触后致密物以及神经元周围网络结构发生变化等。结构的变化与神经元内外分子及非神经元成分的活动密切相关,如配对免疫球蛋白样受体B、Ly-6/神经毒素样蛋白1、勿动蛋白、小胶质细胞、细胞外基质等,对视皮层功能和结构的可塑性具有重要影响。此外,异常视觉经验以及丰富环境等外界干预因素对视皮层神经元结构可塑性均可产生调控作用,最终影响视功能的发育或其损伤后恢复。相比于功能学研究,视皮层神经元结构可塑性的研究依赖于细胞及亚细胞水平的高级成像技术,结果更为直观和有说服力。对视皮层结构可塑性的不断探索会增进我们对弱视等视觉发育相关性疾病的理解,为开展相关基础研究和创新治疗手段奠定基础。本文就近年来视皮层结构可塑性方面的研究进展进行综述。

视皮层;神经元可塑性;突触;树突棘;关键期
ABSTRACT

During the development of visual cortex, the structure of neurons will adaptively change and adjust according to the changes of external environment, which shows structural plasticity.The experience-dependent plasticity of visual cortex is based on the structural changes of neurons, which mainly include change of synaptic connections, disappearance or increase of dendritic spines, turnover of dendritic spines, changes in the size of dendritic spines, changes in postsynaptic density and alterations of perineuronal nets.The structural changes of neurons have significant influence on the plasticity of visual cortex function and structure, and are highly associated with some molecules or non-neuronal components such as paired immunoglobulin-like receptor B, Ly-6/neurotoxin-like protein 1, Nogo, microglia and extracellular matrix and so on.In addition, external intervention factors such as abnormal visual experience and environmental enrichment can have significant impact on the regulation of the structural changes of neurons, and finally influence the development of visual function and the recovery from visual impairment.In comparison with the functional studies, studies on the structural plasticity of visual cortical neurons depend on the state-of-the-art imaging techniques at cellular or sub-cellular level with more visualizable and convincing results.The constant exploration of the structural plasticity of visual cortex will enhance our understanding of visual development-related diseases, such as amblyopia, and lay the foundation for related basic research and innovative treatments.Advances in the structural plasticity of visual cortex were reviewed in this article.

Visual cortex;Neuronal plasticity;Synapse;Dendritic spine;Critical period
Shi Xuefeng, Email: mocdef.3ab61umt_fxihs
引用本文

王珏,张伟,史学锋. 视皮层神经元结构可塑性研究进展[J]. 中华实验眼科杂志,2022,40(06):582-587.

DOI:10.3760/cma.j.cn115989-20200415-00263

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
视皮层的发育受到遗传和环境等多因素的调控。以小鼠为例,其发育大概经历3个阶段:(1)前关键期 从出生到出生后约第19天,视皮层初始神经回路形成 [ 1 ],一般认为其发育受视觉经验的影响较小,主要由遗传因素决定;(2)关键期 出生后第20~35天,视皮层可塑性最强,其发育最易受到视觉经验的调控而发生可塑性改变;(3)关键期结束 视皮层神经回路结构基本固化,发育基本完成,其后若无特殊干预措施,视觉经验不再对视皮层结构和功能产生调控作用 [ 2 , 3 ]。通常认为,人的视觉发育关键期是从出生到8岁左右 [ 4 ]。在视觉系统发育过程中,视觉经验依赖的功能改变同时伴随突触结构的不断重塑 [ 5 ]。既往研究表明,小鼠在未睁眼前视皮层树突棘的数量仅少量增加,睁眼后树突棘数量快速增加,并且树突棘在没有接受输入时或接受未成熟的输入时运动性非常大 [ 6 , 7 ],而外界视觉信息的输入促进了树突棘的形成和发育。前关键期及关键期达到高峰前,视皮层神经元树突上会大量存在比树突棘更具活力的丝状伪足,其出现代表着神经系统尚未发育成熟 [ 8 ]。之后,随着关键期的进行,视皮层不断朝着成熟的结构发育,突触密度逐渐保持在相对稳定状态,树突棘的运动性也随着视皮层发育逐渐下降 [ 8 , 9 ]。关键期结束时,视皮层结构和功能基本发育成熟,成年视皮层中很少能观察到丝状伪足的存在,并且会有更多的树突棘保持在稳定状态,不再随外界环境的变化发生改变 [ 8 ],这一方面使得成年后视皮层神经回路结构变得更加稳固,另一方面也影响了成年视皮层的可塑性,使得弱视等视觉发育相关性疾病的治疗变得非常困难。但是大量基础研究发现,通过一些干预措施,如暗饲养、丰富环境以及通过调控视皮层可塑性相关分子等方法仍然可以使处于稳定状态的视皮层结构发生改变。视皮层神经元结构的变化引起神经网络之间信息的传递改变,进而使视觉系统功能发生改变。本文就近年来视皮层结构可塑性相关研究进展进行综述。
参考文献
[1]
史学锋赵堪兴小鼠视觉发育前关键期视皮层神经元反应特性与突触可塑性[J]中华实验眼科杂志 201634(4):298-304. DOI: 10.3760/cma.j.issn.2095-0160.2016.04.003 .
返回引文位置Google Scholar
百度学术
万方数据
Shi XF , Zhao KX . Response properties of neurons and synaptic plasticity during pre-critical period of visual development in mouse visual cortex[J]Chin J Exp Ophthalmol 201634(4):298-304. DOI: 10.3760/cma.j.issn.2095-0160.2016.04.003 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[2]
Scali M , Baroncelli L , Cenni MC et al. A rich environmental experience reactivates visual cortex plasticity in aged rats[J]Exp Gerontol 201247(4):337-341. DOI: 10.1016/j.exger.2012.01.007 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Gutzmann A , Ergül N , Grossmann R et al. A period of structural plasticity at the axon initial segment in developing visual cortex[J/OL]Front Neuroanat 20148:11[2021-10-05]https://pubmed.ncbi.nlm.nih.gov/24653680/. DOI: 10.3389/fnana.2014.00011 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Gopal S , Kelkar J , Kelkar A et al. Simplified updates on the pathophysiology and recent developments in the treatment of amblyopia:a review[J]Indian J Ophthalmol 201967(9):1392-1399. DOI: 10.4103/ijo.IJO_11_19 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Maya-Vetencourt JF , Origlia N Visual cortex plasticity:a complex interplay of genetic and environmental influences[J/OL]Neural Plast 20122012:631965[2021-10-05]https://pubmed.ncbi.nlm.nih.gov/22852098/. DOI: 10.1155/2012/631965 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
蔡文琴发育神经生物学[M]. 2版北京科学出版社 19993.
[7]
Majewska A , Sur M Motility of dendritic spines in visual cortex in vivo :changes during the critical period and effects of visual deprivation [J/OL]Proc Natl Acad Sci U S A 2003100(26):16024-16029[2021-10-06]https://pubmed.ncbi.nlm.nih.gov/14663137/. DOI: 10.1073/pnas.2636949100 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Grutzendler J , Kasthuri N , Gan WB . Long-term dendritic spine stability in the adult cortex[J]Nature 2002420(6917):812-816. DOI: 10.1038/nature01276 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Chen MQ , Bi AL , Zhang YY et al. Different patterns of changes between actin dynamics and synaptic density in the rat ' s primary visual cortex during a special period of visual development [J]Brain Res Bull 2017132:199-203. DOI: 10.1016/j.brainresbull.2017.06.004 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Diering GH , Huganir RL . The AMPA receptor code of synaptic plasticity[J]Neuron 2018100(2):314-329. DOI: 10.1016/j.neuron.2018.10.018 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Hlushchenko I , Koskinen M , Hotulainen P Dendritic spine actin dynamics in neuronal maturation and synaptic plasticity[J]Cytoskeleton (Hoboken) 201673(9):435-441. DOI: 10.1002/cm.21280 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Meyer D , Bonhoeffer T , Scheuss V Balance and stability of synaptic structures during synaptic plasticity[J]Neuron 201482(2):430-443. DOI: 10.1016/j.neuron.2014.02.031 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Atwal JK , Pinkston-Gosse J , Syken J et al. PirB is a functional receptor for myelin inhibitors of axonal regeneration[J]Science 2008322(5903):967-970. DOI: 10.1126/science.1161151 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Matsushita H , Endo S , Kobayashi E et al. Differential but competitive binding of Nogo protein and class i major histocompatibility complex (MHCI) to the PIR-B ectodomain provides an inhibition of cells[J/OL]J Biol Chem 2011286(29):25739-25747[2021-10-06]https://pubmed.ncbi.nlm.nih.gov/21636572/. DOI: 10.1074/jbc.M110.157859 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Djurisic M , Vidal GS , Mann M et al. PirB regulates a structural substrate for cortical plasticity[J/OL]Proc Natl Acad Sci U S A 2013110(51):20771-20776[2021-10-06]https://pubmed.ncbi.nlm.nih.gov/24302763/. DOI: 10.1073/pnas.1321092110 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Bochner DN , Sapp RW , Adelson JD et al. Blocking PirB up-regulates spines and functional synapses to unlock visual cortical plasticity and facilitate recovery from amblyopia[J/OL]Sci Transl Med 20146(258):258ra140[2021-10-07]https://pubmed.ncbi.nlm.nih.gov/25320232/. DOI: 10.1126/scitranslmed.3010157 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Vidal GS , Djurisic M , Brown K et al. Cell-autonomous regulation of dendritic spine density by PirB[J/OL]eNeuro 20163(5): 10.1523/ENEURO.0089-16.2016 [2021-10-07]https://pubmed.ncbi.nlm.nih.gov/27752542/. DOI:.
返回引文位置Google Scholar
百度学术
万方数据
[18]
Saiepour MH , Rajendran R , Omrani A et al. Ocular dominance plasticity disrupts binocular inhibition-excitation matching in visual cortex[J]Curr Biol 201525(6):713-721. DOI: 10.1016/j.cub.2015.01.024 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Hedrick T , Waters J Acetylcholine excites neocortical pyramidal neurons via nicotinic receptors[J]J Neurophysiol 2015113(7):2195-2209. DOI: 10.1152/jn.00716.2014 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Morishita H , Miwa JM , Heintz N et al. Lynx1,a cholinergic brake,limits plasticity in adult visual cortex[J]Science 2010330(6008):1238-1240. DOI: 10.1126/science.1195320 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Sajo M , Ellis-Davies G , Morishita H Lynx1 limits dendritic spine turnover in the adult visual cortex[J]J Neurosci 201636(36):9472-9478. DOI: 10.1523/JNEUROSCI.0580-16.2016 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Chidambaram SB , Rathipriya AG , Bolla SR et al. Dendritic spines:revisiting the physiological role [J]Prog Neuropsychopharmacol Biol Psychiatry 201992:161-193. DOI: 10.1016/j.pnpbp.2019.01.005 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Hébert M , Lesept F , Vivien D et al. The story of an exceptional serine protease,tissue-type plasminogen activator (tPA)[J]Rev Neurol (Paris) 2016172(3):186-197. DOI: 10.1016/j.neurol.2015.10.002 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Bukhari N , Burman PN , Hussein A et al. Unmasking proteolytic activity for adult visual cortex plasticity by the removal of lynx1[J/OL]J Neurosci 201535(37):12693-12702[2021-10-07]https://pubmed.ncbi.nlm.nih.gov/26377459/. DOI: 10.1523/JNEUROSCI.4315-14.2015 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Oray S , Majewska A , Sur M Dendritic spine dynamics are regulated by monocular deprivation and extracellular matrix degradation[J]Neuron 200444(6):1021-1030. DOI: 10.1016/j.neuron.2004.12.001 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Chen MS , Huber AB , van der Haar ME et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1[J]Nature 2000403(6768):434-439. DOI: 10.1038/35000219 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Meves JM , Geoffroy CG , Kim ND et al. Oligodendrocytic but not neuronal Nogo restricts corticospinal axon sprouting after CNS injury[J]Exp Neurol 2018309:32-43. DOI: 10.1016/j.expneurol.2018.07.013 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Stephany , Frantz MG , McGee AW . Multiple roles for Nogo receptor 1 in visual system plasticity[J]Neuroscientist 201622(6):653-666. DOI: 10.1177/1073858415614564 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
帖晓修蒋斌重新激活成年动物视皮层发育可塑性的研究进展[J]生理科学进展 201243(6):471-474. DOI: 10.3969/j.issn.0559-7765.2012.06.015 .
返回引文位置Google Scholar
百度学术
万方数据
Tie XX , Jiang B Progress in the role of reactivation of visual cortex in developmental plasticity in adultanimals[J]Prog Physiol Sci 201243(6):471-474. DOI: 10.3969/j.issn.0559-7765.2012.06.015 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[30]
McGee AW , Yang Y , Fischer QS et al. Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor[J]Science 2005309(5744):2222-2226. DOI: 10.1126/science.1114362 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Stephany , Ikrar T , Nguyen C et al. Nogo receptor 1 confines a disinhibitory microcircuit to the critical period in visual cortex[J/OL]J Neurosci 201636(43):11006-11012[2021-10-08]https://pubmed.ncbi.nlm.nih.gov/27798181/. DOI: 10.1523/JNEUROSCI.0935-16.2016 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Steinzeig A , Cannarozzo C , Castrén E Fluoxetine-induced plasticity in the visual cortex outlasts the duration of the naturally occurring critical period[J]Eur J Neurosci 201950(10):3663-3673. DOI: 10.1111/ejn.14512 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
解来青徐国旭张积神经元周围网和Nogo受体在大鼠视皮层的发育及氟西汀对其的影响[J]中华眼科杂志 201955(1):37-45. DOI: 10.3760/cma.j.issn.0412-4081.2019.01.008 .
返回引文位置Google Scholar
百度学术
万方数据
Xie LQ , Xu GX , Zhang J et al. The postnatal development of perineuronal net,Nogo receptor and the effect of fluoxetine on remodeling it in the visual cortex of rats[J]Chin J Ophthalmol 201955(1):37-45. DOI: 10.3760/cma.j.issn.0412-4081.2019.01.008 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[34]
Miyamoto A , Wake H , Ishikawa AW et al. Microglia contact induces synapse formation in developing somatosensory cortex[J/OL]Nat Commun 20167:12540[2021-10-09]https://pubmed.ncbi.nlm.nih.gov/27558646/. DOI: 10.1038/ncomms12540 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Tremblay , Lowery RL , Majewska AK . Microglial interactions with synapses are modulated by visual experience[J/OL]PLoS Biol 20108(11):e1000527[2021-10-09]https://pubmed.ncbi.nlm.nih.gov/21072242/. DOI: 10.1371/journal.pbio.1000527 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Sipe GO , Lowery RL , Tremblay et al. Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex[J/OL]Nat Commun 20167:10905[2021-10-09]https://pubmed.ncbi.nlm.nih.gov/26948129/. DOI: 10.1038/ncomms10905 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Parkhurst CN , Yang G , Ninan I et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor[J]Cell 2013155(7):1596-1609. DOI: 10.1016/j.cell.2013.11.030 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Theocharis AD , Skandalis SS , Gialeli C et al. Extracellular matrix structure[J]Adv Drug Deliv Rev 201697:4-27. DOI: 10.1016/j.addr.2015.11.001 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
Aerts J , Nys J , Moons L et al. Altered neuronal architecture and plasticity in the visual cortex of adult MMP-3-deficient mice[J]Brain Struct Funct 2015220(5):2675-2689. DOI: 10.1007/s00429-014-0819-4 .
返回引文位置Google Scholar
百度学术
万方数据
[40]
Kelly EA , Russo AS , Jackson CD et al. Proteolytic regulation of synaptic plasticity in the mouse primary visual cortex:analysis of matrix metalloproteinase 9 deficient mice[J/OL]Front Cell Neurosci 20159:369[2021-10-10] https://pubmed.ncbi.nlm.nih.gov/264 41540/ . DOI: 10.3389/fncel.2015.00369 .
返回引文位置Google Scholar
百度学术
万方数据
[41]
Murase S , Lantz CL , Quinlan EM . Light reintroduction after dark exposure reactivates plasticity in adults via perisynaptic activation of MMP-9[J/OL]Elife 20176:e27345[2021-10-10]https://pubmed.ncbi.nlm.nih.gov/28875930/. DOI: 10.7554/eLife.27345 .
返回引文位置Google Scholar
百度学术
万方数据
[42]
de Vivo L , Landi S , Panniello M et al. Extracellular matrix inhibits structural and functional plasticity of dendritic spines in the adult visual cortex[J/OL]Nat Commun 20134:1484[2021-10-11]https://pubmed.ncbi.nlm.nih.gov/23403561/. DOI: 10.1038/ncomms2491 .
返回引文位置Google Scholar
百度学术
万方数据
[43]
Pizzorusso T , Medini P , Landi S et al. Structural and functional recovery from early monocular deprivation in adult rats[J]Proc Natl Acad Sci U S A 2006103(22):8517-8522. DOI: 10.1073/pnas.0602657103 .
返回引文位置Google Scholar
百度学术
万方数据
[44]
Wallace W , Bear MF . A morphological correlate of synaptic scaling in visual cortex[J]J Neurosci 200424(31):6928-6938. DOI: 10.1523/JNEUROSCI.1110-04.2004 .
返回引文位置Google Scholar
百度学术
万方数据
[45]
Majewska AK . Imaging visual cortical structure and function in vivo [J]J Glaucoma 201322Suppl 5:S21-23. DOI: 10.1097/IJG.0b013e3182934a30 .
返回引文位置Google Scholar
百度学术
万方数据
[46]
Tropea D , Sur M , Majewska AK . Experience-dependent plasticity in visual cortex:dendritic spines and visual responsiveness[J]Commun Integr Biol 20114(2):216-219. DOI: 10.4161/cib.4.2.14505 .
返回引文位置Google Scholar
百度学术
万方数据
[47]
Markus EJ , Petit TL . Synaptic structural plasticity:role of synaptic shape[J]Synapse 19893(1):1-11. DOI: 10.1002/syn.890030102 .
返回引文位置Google Scholar
百度学术
万方数据
[48]
Sigal YM , Bae H , Bogart LJ et al. Structural maturation of cortical perineuronal nets and their perforating synapses revealed by superresolution imaging[J]Proc Natl Acad Sci U S A 2019116(14):7071-7076. DOI: 10.1073/pnas.1817222116 .
返回引文位置Google Scholar
百度学术
万方数据
[49]
Erchova I , Vasalauskaite A , Longo V et al. Enhancement of visual cortex plasticity by dark exposure[J/OL]Philos Trans R Soc Lond B Biol Sci 2017372(1715):20160159[2021-10-10]https://pubmed.ncbi.nlm.nih.gov/28093553/. DOI: 10.1098/rstb.2016.0159 .
返回引文位置Google Scholar
百度学术
万方数据
[50]
Duffy KR , Mitchell DE . Darkness alters maturation of visual cortex and promotes fast recovery from monocular deprivation[J]Curr Biol 201323(5):382-386. DOI: 10.1016/j.cub.2013.01.017 .
返回引文位置Google Scholar
百度学术
万方数据
[51]
Zhou Y , Lai B , Gan WB . Monocular deprivation induces dendritic spine elimination in the developing mouse visual cortex[J/OL]Sci Rep 20177(1):4977[2021-10-11]https://pubmed.ncbi.nlm.nih.gov/28694464/. DOI: 10.1038/s41598-017-05337-6 .
返回引文位置Google Scholar
百度学术
万方数据
[52]
Yu H , Majewska AK , Sur M Rapid experience-dependent plasticity of synapse function and structure in ferret visual cortex in vivo [J/OL]Proc Natl Acad Sci U S A 2011108(52):21235-21240[2021-10-12]https://pubmed.ncbi.nlm.nih.gov/22160713/. DOI: 10.1073/pnas.1108270109 .
返回引文位置Google Scholar
百度学术
万方数据
[53]
Pham TM , Winblad B , Granholm AC et al. Environmental influences on brain neurotrophins in rats[J]Pharmacol Biochem Behav 200273(1):167-175. DOI: 10.1016/s0091-3057(02)00783-9 .
返回引文位置Google Scholar
百度学术
万方数据
[54]
Kalogeraki E , Pielecka-Fortuna J , Löwel S Environmental enrichment accelerates ocular dominance plasticity in mouse visual cortex whereas transfer to standard cages resulted in a rapid loss of increased plasticity[J/OL]PLoS One 201712(10):e0186999[2021-10-12]https://pubmed.ncbi.nlm.nih.gov/29073219/. DOI: 10.1371/journal.pone.0186999 .
返回引文位置Google Scholar
百度学术
万方数据
[55]
Sale A , Berardi N , Maffei L Environment and brain plasticity:towards an endogenous pharmacotherapy[J]Physiol Rev 201494(1):189-234. DOI: 10.1152/physrev.00036.2012 .
返回引文位置Google Scholar
百度学术
万方数据
[56]
王圆月刘向玲蔺静静反转缝合与丰富环境联合干预对成年弱视大鼠视皮层可塑性的再激活作用[J]中国斜视与小儿眼科杂志 201422(1):5-8,30. DOI: 10.3969/j.issn.1005-328X.2014.01.002 .
返回引文位置Google Scholar
百度学术
万方数据
Wang YY , Liu XL , Lin JJ et al. Effect of reverse suture combined with enriched environment intervention on the reactivation of ocular dominance plasticity in the visual cortex ofmoncular form deprived adult rats[J] Chin J Strabismus & Pediatric Ophthalmol 201422(1):5-8,30. DOI: 10.3969/j.issn.1005-328X.2014.01.002 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[57]
Huang X Silent synapse:a new player in visual cortex critical period plasticity[J]Pharmacol Res 2019141:586-590. DOI: 10.1016/j.phrs.2019.01.031 .
返回引文位置Google Scholar
百度学术
万方数据
[58]
Favaro PD , Huang X , Hosang L et al. An opposing function of paralogs in balancing developmental synapse maturation[J/OL]PLoS Biol 201816(12):e2006838[2021-10-13]https://pubmed.ncbi.nlm.nih.gov/30586380/. DOI: 10.1371/journal.pbio.2006838 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
史学锋,Email: mocdef.3ab61umt_fxihs
B
所有作者均声明不存在利益冲突
C
国家自然科学基金面上项目 (81770956、81371049)
天津市杰出青年科学基金项目 (17JCJQJC46000)
天津市131创新型人才团队项目 (201936)
天津市卫生计生行业高层次人才选拔培养工程"津门医学英才"项目
华厦转化医学基金项目 (2017-C-002)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号