实验研究
ENGLISH ABSTRACT
高糖诱导的人视网膜血管内皮细胞中环状RNA差异表达分析
贾杨雪
王志玲
魏莹莹
朱恺
顾永昊
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20200602-00390
Differential expression analysis of circular RNA in human retinal vascular endothelial cells induced by high glucose
Jia Yangxue
Wang Zhiling
Wei Yingying
Zhu Kai
Gu Yonghao
Authors Info & Affiliations
Jia Yangxue
Department of Ophthalmology, Second Affiliated Hospital of Wannan Medical College, Wuhu 241000, China
Wang Zhiling
Department of Ophthalmology, Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China
Wei Yingying
Department of Ophthalmology, Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China
Zhu Kai
Department of Ophthalmology, Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China
Gu Yonghao
Department of Ophthalmology, Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China
·
DOI: 10.3760/cma.j.cn115989-20200602-00390
445
53
0
0
2
0
PDF下载
APP内阅读
摘要

目的研究高糖培养条件下人视网膜血管内皮细胞(HRVECs)的环状RNA(circRNA)表达变化。

方法将HRVECs分为正常对照组、高渗对照组和高糖组,分别在5.5 mmol/L葡萄糖培养基、19.5 mmol/L甘露醇+5.5 mmol/L葡萄糖培养基和25 mmol/L葡萄糖培养基中培养24 h。使用circRNA芯片对高糖组和正常对照组HRVECs进行circRNA表达谱检测,筛选出差异表达circRNA分子;采用实时荧光定量PCR验证差异表达circRNA分子在正常对照组、高渗对照组和高糖组细胞中的表达变化,并采用Circular RNA Interactome数据库预测差异表达circRNA可能作用的微小RNA(miRNA)靶点。

结果在高糖培养的HRVECs中共筛选出448个差异表达circRNA(差异倍数≥1.5或≤0.67且 P<0.05),其中182个circRNA上调,266个circRNA下调。表达上调排序前3的差异circRNA分别为hsa_circ_0002938、hsa_circ_0008036和hsa_circ_0001946,表达下调排序前3的差异circRNA分别为hsa_circ_0035277、hsa_circ_0008344和hsa_circ_0001874。实时荧光定量PCR结果显示,与正常对照组和高渗对照组相比,高糖组中hsa_circ_0002938、hsa_circ_0008036和hsa_circ_0001946相对表达量显著升高,hsa_circ_0035277、hsa_circ_0008344和hsa_circ_0001874相对表达量显著下调,差异均有统计学意义(均 P<0.05);正常对照组与高渗对照组各差异circRNA表达比较,差异均无统计学意义(均 P>0.05)。

结论在高糖条件下培养的HRVECs中circRNA呈差异表达,差异表达circRNA可能参与糖尿病视网膜病变发病机制。

糖尿病视网膜病变;环状RNA;基因芯片;靶基因
ABSTRACT

ObjectiveTo investigate the differential expression profile of circular RNA (circRNA) in high glucose-cultured human retinal vascular endothelial cells (HRVECs).

MethodsHRVECs were divided into high glucose group, normal control group and hypertonic control group, and were cultured in 25 mmol/L glucose medium, 5.5 mmol/L glucose medium and 19.5 mmol/L mannitol+ 5.5 mmol/L glucose medium for 24 hours accordingly.The differentially expressed circRNA molecules between high glucose group and normal control group were screened by circRNA microarray analysis.The expression of the most significant differentially expressed circRNAs in different groups was verified by real-time quantitative PCR.The possible microRNA (miRNA) targets were analyzed through the Circular RNA Interactome database.

ResultsIt was found that 448 circRNAs were differentially expressed (FC≥1.5 or FC≤0.67, P<0.05) in high glucose-cultured HRVECs, among which 182 were up-regulated and 266 were down-regulated.The top 3 significantly up-regulated circRNAs were hsa_circ_0002938, hsa_circ_0008036, and hsa_circ_0001946, and the top 3 significantly down-regulated circRNAs were hsa_circ_0035277, hsa_circ_0008344, and hsa_circ_0001874.Compared with normal control group and hypertonic control group, the relative expressions of top 3 up-regulated circRNAs were significantly enhanced and the relative expressions of top 3 down-regulated circRNAs were significantly reduced in high glucose group, showing statistically significant differences (all at P<0.05).No significant difference was found in the differentially expressed circRNAs between normal control group and hypertonic control group (all at P>0.05).

ConclusionsCircRNAs are differentially expressed in high glucose-cultured HRVECs, and the differentially expressed circRNAs may be involved in the regulatory mechanism of diabetic retinopathy.

Diabetic retinopathy;Circular RNA;Microarray;Target gene
Gu Yonghao, Email: mocdef.labiamtohenalplorea
引用本文

贾杨雪,王志玲,魏莹莹,等. 高糖诱导的人视网膜血管内皮细胞中环状RNA差异表达分析[J]. 中华实验眼科杂志,2022,40(07):617-622.

DOI:10.3760/cma.j.cn115989-20200602-00390

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
糖尿病视网膜病变(diabetic retinopathy,DR)是糖尿病的主要微血管并发症之一,严重影响患者视力。我国糖尿病患者中DR的总患病率约为23% [ 1 ]。有研究显示,15年以上病程的1型和2型糖尿病患者中DR患病率分别达98%和78% [ 2 ]。目前仍然缺乏良好的DR防治方法,探索其发病机制及可能的治疗方向显得非常重要。血管内皮细胞功能障碍和视网膜微环境的代谢变化是DR的主要发病机制之一,预防血管内皮细胞功能障碍可降低糖尿病性血管并发症的风险 [ 3 , 4 , 5 ]。环状RNA(circular RNA,circRNA)是一种广泛存在于真核生物体内的非编码RNA,具有高度稳定性、保守性、一定的时序及组织特异性,其主要功能包括:与微小RNA(microRNA,miRNA)竞争性结合;通过RNA结合蛋白与蛋白质相互作用 [ 6 ];调控RNA聚合酶的转录进而调控亲本基因的表达 [ 7 ];通过选择性剪接或碱基互补配对等方式介导假基因形成 [ 8 ];少部分的circRNA可作为mRNA编码蛋白 [ 9 ]。越来越多的研究表明,circRNA参与肺癌、食管癌、胃癌、结直肠癌、胰腺癌、肝癌等疾病的病理过程,成为肿瘤早期诊断标志物及潜在的治疗靶点 [ 10 ]。另外,也有研究表明circRNA可通过调控下游靶基因表达影响胰岛β细胞的分泌功能,从而在糖尿病及其并发症的发展中发挥作用 [ 11 ]。本课题组前期应用circRNA芯片对5例增生性DR患者、5例无明显眼底病变的2型糖尿病患者和5名年龄匹配的正常人血浆进行对比研究发现,增生性DR患者血浆的circRNA谱发生明显变化,证实circRNA在DR的发病中可能发挥潜在作用 [ 12 ]。采用血浆标本进行circRNA芯片研究时,血浆内的各种成分易受身体整体情况的影响,而直接进行细胞实验可以更准确地发现高糖刺激对视网膜血管内皮细胞中circRNA表达的影响。本研究拟通过circRNA芯片筛选正常与高糖培养的人视网膜血管内皮细胞(human retinal vascular endothelial cells,HRVECs)中差异表达的circRNA,采用实时荧光定量PCR进行验证,分析其可能的靶miRNA分子,为DR的诊断和治疗提供新的依据。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
王芳王春芳闫建林. 45岁以上糖尿病患者中糖尿病视网膜病变的患病率调查及相关危险因素分析[J]. 中华实验眼科杂志 201331(8)∶783-787. DOI: 10.3760/cma.j.issn.2095-0160.2013.08.018 .
返回引文位置Google Scholar
百度学术
万方数据
Wang F , Wang CF , Yan JL . Survey of diabetic retinopathy of the diabetic population over 45 years old[J]. Chin J Exp Ophthalmol 201331(8)∶783-787. DOI: 10.3760/cma.j.issn.2095-0160.2013.08.018 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[2]
Roy MS , Klein R , <x>O</x> <x>'</x> <x>Colmain</x> BJ et al. The prevalence of diabetic retinopathy among adult type 1 diabetic persons in the United States[J]. Arch Ophthalmol 2004122(4)∶546-551. DOI: 10.1001/archopht.122.4.546 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
廖怿陈华补体功能失调对糖尿病视网膜病变的影响[J]. 中华实验眼科杂志 202038(1)∶68-72. DOI: 10.3760/cma.j.issn.2095-0160.2020.01.014 .
返回引文位置Google Scholar
百度学术
万方数据
Liao Y , Chen H Effects of complement dysfunction on diabetic retinopathy[J]. Chin J Exp Ophthalmol 202038(1)∶68-72. DOI: 10.3760/cma.j.issn.2095-0160.2020.01.014 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[4]
Sorrentino FS , Matteini S , Bonifazzi C et al. Diabetic retinopathy and endothelin system:microangiopathy versus endothelial dysfunction[J]. Eye (Lond) 201832(7)∶1157-1163. DOI: 10.1038/s41433-018-0032-4 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Li JY , Huang WQ , Tu RH et al. Resveratrol rescues hyperglycemia-induced endothelial dysfunction via activation of Akt[J]. Acta Pharmacol Sin 201738(2)∶182-191. DOI: 10.1038/aps.2016.109 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Hansen TB , Jensen TI , Clausen BH et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature 2013495(7441)∶384-388. DOI: 10.1038/nature11993 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Li Z , Huang C , Bao C et al. Exon-intron circular RNAs regulate transcription in the nucleus[J]. Nat Struct Mol Biol 201522(3)∶256-264. DOI: 10.1038/nsmb.2959 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Dong R , Zhang XO , Zhang Y et al. CircRNA-derived pseudogenes[J]. Cell Res 201626(6)∶747-750. DOI: 10.1038/cr.2016.42 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Tay Y , Rinn J , Pandolfi PP . The multilayered complexity of ceRNA crosstalk and competition[J]. Nature 2014505(7483)∶344-352. DOI: 10.1038/nature12986 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
曹萱张徐蒋鹏程环状RNA在恶性肿瘤中的研究进展[J]. 癌症进展 202018(13)∶1297-1300,1400. DOI: 10.11877/j.issn.1672-1535.2020.18.13.01 .
返回引文位置Google Scholar
百度学术
万方数据
Cao X , Zhang X , Jiang PC . Research progress of circular RNA in malignant tumors[J]. Cancer Prog 202018(13)∶1297-1300,1400. DOI: 10.11877/j.issn.1672-1535.2020.18.13.01 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[11]
白雨刘文虎环状RNA与糖尿病及其并发症[J]. 临床肾脏病杂志 202020(5)∶421-424. DOI: 10.3969/j.issn.1671-2390.2020.05.014 .
返回引文位置Google Scholar
百度学术
万方数据
Bai Y , Liu WH . Correlation of circular RNAs with diabetes mellitus and its complications[J]. J Clin Nephrol 202020(5)∶421-424. DOI: 10.3969/j.issn.1671-2390.2020.05.014 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[12]
Gu Y , Ke G , Wang L et al. Altered expression profile of circular RNAs in the serum of patients with diabetic retinopathy revealed by microarray[J]. Ophthalmic Res 201758(3)∶176-184. DOI: 10.1159/000479156 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Zhang SJ , Chen X , Li CP et al. Identification and characterization of circular RNAs as a new class of putative biomarkers in diabetes retinopathy[J]. Invest Ophthalmol Vis Sci 201758(14)∶6500-6509. DOI: 10.1167/iovs.17-22698 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Shan K , Liu C , Liu BH et al. Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus[J]. Circulation 2017136(17)∶1629-1642. DOI: 10.1161/CIRCULATIONAHA.117.029004 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Liu C , Yao MD , Li CP et al. Silencing of circular RNA -ZNF609 ameliorates vascular endothelial dysfunction [J]. Theranostics 20177(11)∶2863-2877. DOI: 10.7150/thno.19353 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
He M , Wang W , Yu H et al. Comparison of expression profiling of circular RNAs in vitreous humour between diabetic retinopathy and non-diabetes mellitus patients[J]. Acta Diabetol 202057(4)∶479-489. DOI: 10.1007/s00592-019-01448-w .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Jin G , Wang Q , Hu X et al. Profiling and functional analysis of differentially expressed circular RNAs in high glucose-induced human umbilical vein endothelial cells[J]. FEBS Open Bio 20199(9)∶ 164 0 -1651. DOI: 10.1002/2211-5463.12709 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Liu C , Ge HM , Liu BH et al. Targeting pericyte-endothelial cell crosstalk by circular RNA-cPWWP2A inhibition aggravates diabetes-induced microvascular dysfunction[J]. Proc Natl Acad Sci U S A 2019116(15)∶7455-7464. DOI: 10.1073/pnas.1814874116 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Cai F , Jiang H , Li Y et al. Upregulation of long non-coding RNA SNHG16 promotes diabetes-related RMEC dysfunction via activating NF-κB and PI3K/AKT pathways[J]. Mol Ther Nucleic Acids 202124512-527. DOI: 10.1016/j.omtn.2021.01.035 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Huang Y , Chen L , Feng Z et al. EPC-derived exosomal miR-1246 and miR-1290 regulate phenotypic changes of fibroblasts to endothelial cells to exert protective effects on myocardial infarction by targeting ELF5 and SP1[J/OL]. Front Cell Dev Biol 20219647763[2022-03-11]. http://www.ncbi.nlm.nih.gov/pubmed/34055778. DOI: 10.3389/fcell.2021.647763 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Fang Y , Gao F , Hao J et al. MicroRNA-1246 mediates lipopolysaccharide-induced pulmonary endothelial cell apoptosis and acute lung injury by targeting angiotensin-converting enzyme 2[J]. Am J Transl Res 20179(3)∶1287-1296.
返回引文位置Google Scholar
百度学术
万方数据
[22]
Sannigrahi MK , Sharma R , Singh V et al. Role of host miRNA hsa-miR-139-3p in HPV-16-induced carcinomas[J]. Clin Cancer Res 201723(14)∶3884-3895. DOI: 10.1158/1078-0432.CCR-16-2936 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Li W , Jin L , Cui Y et al. Bone marrow mesenchymal stem cells-induced exosomal microRNA-486-3p protects against diabetic retinopathy through TLR4/NF-κB axis repression[J]. J Endocrinol Invest 202144(6)∶1193-1207. DOI: 10.1007/s40618-020-01405-3 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Du P , Wang J , Han Y et al. Blocking the lncRNA MALAT1/miR-224-5p/NLRP3 axis inhibits the hippocampal inflammatory response in T2DM With OSA[J/OL]. Front Cell Neurosci 20201497[2022-03-13]. http://www.ncbi.nlm.nih.gov/pubmed/32477065. DOI: 10.3389/fncel.2020.00097 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
顾永昊,Email: mocdef.labiamtohenalplorea
B

贾杨雪:实验实施、数据整理及分析、论文撰写;王志玲、魏莹莹、朱恺:数据整理和分析;顾永昊:实验设计、论文修改及定稿

C
感谢中国科技大学生命科学院、上海康成生物工程有限公司对本实验的帮助
D
所有作者均声明不存在利益冲突
E
安徽省自然科学基金项目 (1908085MH254)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号