临床研究
ENGLISH ABSTRACT
视网膜中央静脉阻塞黄斑区微血管结构特征性改变
李泽锋
周希瑗
刘丹宁
周家林
马宁
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20200604-00396
Characteristic changes of macular microvascular structure in central retinal vein occlusion
Li Zefeng
Zhou Xiyuan
Liu Danning
Zhou Jialin
Ma Ning
Authors Info & Affiliations
Li Zefeng
Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
Li Zefeng is working at Ningbo Eye Hospital, Ningbo 315000, China
Zhou Xiyuan
Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
Liu Danning
Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
Zhou Jialin
Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
Ma Ning
Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
·
DOI: 10.3760/cma.j.cn115989-20200604-00396
673
81
0
0
3
2
PDF下载
APP内阅读
摘要

目的观察视网膜中央静脉阻塞(CRVO)继发黄斑水肿(ME)患者黄斑区微血管结构变化。

方法采用横断面研究方法,纳入2017年11月至2019年3月在重庆医科大学附属第二医院眼科检查确诊的单眼CRVO继发ME患者15例30眼,同时纳入年龄和性别匹配的健康受试者15人15眼作为正常对照组。所有受试者均行最佳矫正视力(BCVA)、眼压、裂隙灯显微镜联合前置镜、彩色眼底照相、光相干断层扫描(OCT)检查。采用光相干断层扫描血管成像(OCTA)仪扫描黄斑区3 mm×3 mm范围,测量黄斑中心凹视网膜厚度(CMT)、黄斑中心凹无血管区(FAZ)面积、FAZ周长、非圆度指数(AI)、中心凹浅层视网膜毛细血管丛(SCP)血流密度、中心凹深层视网膜毛细血管丛(DCP)血流密度。比较患眼与对侧健眼对应参数及患眼和对侧健眼与正常对照组眼参数;采用Pearson线性相关分析评估患眼BCVA、CMT与黄斑区微血管结构各参数间的相关性。

结果与对侧健眼比较,患眼FAZ面积和FAZ周长增加,AI、SCP和DCP血流密度降低,差异均有统计学意义(均 P<0.01)。与正常对照组比较,患眼FAZ面积和FAZ周长增加,AI、SCP和DCP血流密度降低,对侧健眼AI和DCP血流密度降低,差异均有统计学意义(均 P<0.05)。Pearson相关分析结果显示,患眼BCVA(LogMAR视力)与FAZ面积和FAZ周长呈明显正相关( r=0.614、0.609,均 P<0.05),与AI、SCP血流密度呈负相关( r=-0.517、-0.593,均 P<0.05);CMT与FAZ面积、FAZ周长呈明显正相关( r=0.523、0.610,均 P<0.05),与AI、SCP血流密度呈负相关( r=-0.537、-0.608,均 P<0.05)。

结论CRVO继发ME患眼黄斑血管特征性改变为中心凹区毛细血管减少所致血流量减少,且其对侧健眼也存在相应的血流量改变;患眼ME程度及视力损害程度与黄斑中心凹形态破坏程度及黄斑中心凹血流量相关。

视网膜中央静脉阻塞;黄斑水肿;光相干断层扫描血管成像;荧光素眼底血管造影
ABSTRACT

ObjectiveTo explore the microvasculature changes in macular area of central retinal vein occlusion (CRVO) patients with macular edema (ME).

MethodsA cross-sectional study was conducted.Fifteen patients with monocular ME secondary to CRVO (30 eyes) and 15 age- and gender-matched normal subjects (15 eyes) were enrolled in The Second Affiliated Hospital of Chongqing Medical University from November 2017 to March 2019.Best corrected visual acuity (BCVA), intraocular pressure, slit lamp microscope with pre-set lens, color fundus photography and optical coherence tomography (OCT) were performed in all subjects.The central macular thickness (CMT), foveal avascular zone (FAZ) area, FAZ perimeter, acircularity index (AI), vessel density of superficial retinal capillary plexus (SCP) and deep retinal capillary plexus (DCP) in 3 mm×3 mm macular area were measured by optical coherence tomography angiography instrument and compared between different groups.The correlation between BCVA, CMT and microvascular structural parrameters in ME eyes of CRVO patients was analyzed by Pearson linear correlation test.This study protocol adhered to the Declaration of Helsinki and was approved by the Ethics Committee of The Second Affiliated Hospital of Chongqing Medical University (No.2018-211).Written informed consent was obtained from each subject before any medical examination.

ResultsCompared with contralateral eyes, the FAZ area and FAZ perimeter of ME eyes were significantly increased, and AI, the vessel density of SCP and DCP were significantly decreased (all at P<0.01).Compared with normal control eyes, the FAZ area and FAZ perimeter of contralateral eyes of CRVO patients were significantly increased, and AI, the vessel density of DCP were significantly decreased (all at P<0.05).In ME eyes, the BCVA LogMAR was positively correlated with FAZ area and FAZ perimeter ( r=0.614, 0.609; both at P<0.05), and was negatively correlated with AI and vessel density of SCP ( r=-0.517, -0.593; both at P<0.058).In ME eyes, CMT was positively correlated with FAZ area and FAZ perimeter ( r=0.523, 0.610; both at P<0.05), and was negatively correlated with AI and the vessel density of SCP ( r=-0.537, -0.608; both at P<0.05).

ConclusionsThe characteristic microvascular change in ME secondary to CRVO eyes is the decrease of blood flow caused by the decrease of capillaries in fovea, and the same change in blood flow also exists in their contralateral eyes.The degree of ME and visual function damage are correlated with the degree of foveal damage and the blood flow in fovea.

Central retinal vein occlusion;Macular edema;Tomography, optical coherence, angiography;Fluorescein fundus angiography
Zhou Xiyuan, Email: mocdef.nabuyila2002nauyixuohz
引用本文

李泽锋,周希瑗,刘丹宁,等. 视网膜中央静脉阻塞黄斑区微血管结构特征性改变[J]. 中华实验眼科杂志,2022,40(07):664-669.

DOI:10.3760/cma.j.cn115989-20200604-00396

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
视网膜静脉阻塞(retinal vein occlusion,RVO)是一种潜在的致盲疾病,发病率约为0.5%,是仅次于糖尿病视网膜病变的第二大常见视网膜血管疾病 [ 1 ]。根据阻塞部位不同,临床上可将RVO分为视网膜中央静脉阻塞(central retinal vein occlusion,CRVO)、视网膜分支静脉阻塞(branch retinal vein occlusion,BRVO)和视网膜半侧静脉阻塞。静脉阻塞引起的黄斑水肿(macular edema,ME)和出血等病理改变可造成黄斑微血管结构和功能受损,导致患眼视力损害。以往的检测手段,如荧光素眼底血管造影(fluorescein fundus angiography,FFA)对黄斑区毛细血管改变的评估受RVO急性期的限制 [ 2 ],而光相干断层扫描血管成像(optical coherence tomography angiography,OCTA)是近年来发展起来的一种非侵入性微血管成像技术,其以血细胞运动来评价微血管形态,在不同层次结构内观察血管的血流密度变化,可以良好地观察和评估黄斑微血管结构的改变 [ 3 , 4 , 5 ]。CRVO继发的ME症状重于BRVO,且发病机制存在差异。以往FFA及OCTA观察BRVO患眼黄斑微血管形态改变的研究中显示,BRVO患眼黄斑中心凹无血管区(foveal avascular zone,FAZ)面积明显大于对侧健眼,且最佳矫正视力(best corrected visual acuity,BCVA)与FAZ区域显著相关 [ 6 , 7 ]。目前,对于CRVO的研究较少,且对CRVO患眼及健眼黄斑血管结构分析尚未见报道。本研究通过对CRVO继发ME患眼、对侧健眼及正常对照眼黄斑微血管结构进行OCTA定性定量分析,并分析其与视力、黄斑中心凹视网膜厚度(central macular thickness,CMT)的相关性,以期为CRVO继发ME的病变发展及治疗效果等提供依据。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Rogers S , McIntosh RL , Cheung N et al. The prevalence of retinal vein occlusion:pooled data from population studies from the United States,Europe,Asia,and Australia[J]. Ophthalmology 2010117(2)∶313-319. DOI: 10.1016/j.ophtha.2009.07.017 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Casselholmde Salles M , Kvanta A , Amrén U et al. Optical coherence tomography angiography in central retinal vein occlusion:correlation between the foveal avascular zone and visual acuity[J]. Invest Ophthalmol Vis Sci 201657(9)∶OCT242-OCT246. DOI: 10.1167/iovs.15-18819 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Jia Y , Tan O , Tokayer J et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Opt Express 201220(4)∶4710-4725. DOI: 10.1364/OE.20.004710 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
汤富生卢建民马翔OCT参数对视网膜静脉阻塞继发黄斑水肿抗VEGF疗法预后的预测价值[J]. 中华实验眼科杂志 202038(7)∶625-628. DOI: 10.3760/cma.j.cn115989-20200519-00358 .
返回引文位置Google Scholar
百度学术
万方数据
Tang FS , Lu JM , Ma X Predictive value of OCT parameters to prognosis of anti-VEGF therapy for macular edema secondary to retinal vein occlusion[J]. Chin J Exp Ophthalmol 202038(7)∶625-628. DOI: 10.3760/cma.j.cn115989-20200519-00358 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[5]
王敏对光相干断层扫描血管成像的再认识[J]. 中华眼底病杂志 201935(1)∶1-2. DOI: 10.3760/cma.j.issn.1005-1015.2019.01.001 .
返回引文位置Google Scholar
百度学术
万方数据
Wang M Re-understanding optical coherence tomography angiography[J]. Chin J Ocul Fundus Dis 201935(1)∶1-2. DOI: 10.3760/cma.j.issn.1005-1015.2019.01.001 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[6]
Kang JW , Yoo R , Jo YH et al. Correlation of microvascular structures on optical coherence tomography angiography with visual acuity in retinal vein occlusion[J]. Retina 201737(9)∶1700-1709. DOI: 10.1097/IAE.0000000000001403 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Wons J , Pfau M , Wirth MA et al. Optical coherence tomography angiography of the foveal avascular zone in retinal vein occlusion[J]. Ophthalmologica 2016235(4)∶195-202. DOI: 10.1159/000445482 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Winegarner A , Wakabayashi T , Hara-Ueno C et al. Retinal microvasculature and visual acuity after intravitreal aflibercept in eyes with central retinal vein occlusion:an optical coherence tomography angiography study[J]. Retina 201838(10)∶2067-2072. DOI: 10.1097/IAE.0000000000001828 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Tsuboi K , Kamei M Longitudinal vasculature changes in branch retinal vein occlusion with projection-resolved optical coherence tomography angiography[J]. Graefe's Arch Clin Exp Ophthalmol 2019257(9)∶1831-1840. DOI: 10.1007/s00417-019-04371-6 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Rha EY , Kim JM , Yoo G Volume measurement of various tissues using the Image J software[J/OL]. J Craniofac Surg 201526(6)∶e505-e506[2021-10-16]. http://www.ncbi.nlm.nih.gov/pubmed/26352364. DOI: 10.1097/SCS.0000000000002022 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Parodi MB , Visintin F , Della Rupe P et al. Foveal avascular zone in macular branch retinal vein occlusion[J]. Int Ophthalmol 199519(1)∶25-28. DOI: 10.1007/BF00156415 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Noma H , Funatsu H , Sakata K et al. Macular microcirculation and macular oedema in branch retinal vein occlusion[J]. Br J Ophthalmol 200993(5)∶630-633. DOI: 10.1136/bjo.2008.146597 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Sophie R , Hafiz G , Scott AW et al. Long-term outcomes in ranibizumab-treated patients with retinal vein occlusion;the role of progression of retinal nonperfusion[J]. Am J Ophthalmol 2013156(4)∶693-705. DOI: 10.1016/j.ajo.2013.05.039 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Chung EJ , Hong YT , Lee SC et al. Prognostic factors for visual outcome after intravitreal bevacizumab for macular edema due to branch retinal vein occlusion[J]. Graefe's Arch Clin Exp Ophthalmol 2008246(9)∶1241-1247. DOI: 10.1007/s00417-008-0866-8 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Coscas F , Glacet-Bernard A , Miere A et al. Optical coherence tomography angiography in retinal vein occlusion:evaluation of superficial and deep capillary plexa[J]. Am J Ophthalmol 2016161160-171. DOI: 10.1016/j.ajo.2015.10.008 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Yu DY , Cringle SJ , Balaratnasingam C et al. Retinal ganglion cells:energetics,compartmentation,axonal transport,cytoskeletons and vulnerability[J]. Prog Retin Eye Res 201336217-246. DOI: 10.1016/j.preteyeres.2013.07.001 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Provis JM . Development of the primate retinal vasculature[J]. Prog Retin Eye Res 200120(6)∶799-821. DOI: 10.1016/s1350-9462(01)00012-x .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Alder VA , Cringle SJ , Constable IJ . The retinal oxygen profile in cats[J]. Invest Ophthalmol Vis Sci 198324(1)∶30-36.
返回引文位置Google Scholar
百度学术
万方数据
[19]
Wang Q , Chan SY , Yan Y et al. Optical coherence tomography angiography in retinal vein occlusions[J]. Graefe's Arch Clin Exp Ophthalmol 2018256(9)∶1615-1622. DOI: 10.1007/s00417-018-4038-1 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Remky A , Wolf S , Knabben H et al. Perifoveal capillary network in patients with acute central retinal vein occlusion[J]. Ophthalmology 1997104(1)∶33-37. DOI: 10.1016/s0161-6420(97)30365-0 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Dvorak HF , Brown LF , Detmar M et al. Vascular permeability factor/vascular endothelial growth factor,microvascular hyperpermeability,and angiogenesis[J]. Am J Pathol 1995146(5)∶1029-1039.
返回引文位置Google Scholar
百度学术
万方数据
[22]
Wakabayashi T , Sato T , Hara-Ueno C et al. Retinal microvasculature and visual acuity in eyes with branch retinal vein occlusion:imaging analysis by optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci 201758(4)∶2087-2094. DOI: 10.1167/iovs.16-21208 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
周希瑗,Email: mocdef.nabuyila2002nauyixuohz
B

李泽锋:直接参与设计试验、实施研究、采集数据、分析和解释数据、文章撰写;周希瑗、刘丹宁:酝酿和设计试验、实施研究、对文章的知识性内容作批判性审阅、指导试验;周家林、马宁:参与采集数据、分析和解释数据、指导试验

C
所有作者均声明不存在利益冲突
D
重庆市基础与前沿研究计划项目 (cstc2016jcyjA0122)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号