综述
ENGLISH ABSTRACT
血红蛋白氧载体增强肿瘤治疗效果研究进展
杨晓倩
陈绍水
作者及单位信息
·
DOI: 10.3760/cma.j.issn.1007-1245.2022.18.034
Research progress of hemoglobin oxygen carriers in increasing the therapeutic effect of tumors
Yang Xiaoqian
Chen Shaoshui
Authors Info & Affiliations
Yang Xiaoqian
Oncology Department, Binzhou Medical University Hospital, Binzhou 256600, China
Chen Shaoshui
Oncology Department, Binzhou Medical University Hospital, Binzhou 256600, China
·
DOI: 10.3760/cma.j.issn.1007-1245.2022.18.034
0
0
0
0
0
0
PDF下载
APP内阅读
摘要

肿瘤细胞异常增殖所形成的缺氧微环境导致当前多种抗癌治疗效果不够理想,且加速恶性进展,增加转移。在实体瘤中,充足的氧气供应对于提高抗肿瘤治疗的敏感性是至关重要的。具有携氧功能的血红蛋白氧载体(HBOCs)能有效缓解肿瘤缺氧,并与当前多种肿瘤临床治疗手段联用,取得了良好的效果。本文通过对近5年来HBOCs研究进展及其在缓解肿瘤缺氧、增强肿瘤治疗效果方面的应用进行综述,为临床肿瘤治疗提供参考。

血红蛋白;氧载体;肿瘤缺氧;肿瘤治疗
ABSTRACT

The hypoxic microenvironment formed by the abnormal proliferation of tumor cells leads to the unsatisfactory effect of various anti-cancer treatments, which accelerates the malignant progression and increases the metastasis. In solid tumors, adequate O 2 supply is crucial to improving the sensitivity of antitumor therapy. Hemoglobin oxygen carriers (HBOCs) with oxygen-carrying function can effectively alleviate the tumor hypoxia and have achieved good results in combination with a variety of current clinical tumor treatment methods. This paper reviews the research progress of HBOCs in recent 5 years and their application in alleviating the tumor hypoxia and increasing the curative effect of tumor treatment, to provide a reference for clinical tumor treatment.

Hemoglobin;Oxygen carrier;Tumor hypoxia;Tumor treatment
Chen Shaoshui, Email: mocdef.6ab21ssnehcyfyb
引用本文

杨晓倩,陈绍水. 血红蛋白氧载体增强肿瘤治疗效果研究进展[J]. 国际医药卫生导报,2022,28(18):2659-2663.

DOI:10.3760/cma.j.issn.1007-1245.2022.18.034

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
肿瘤是当今对人类寿命及生活质量影响最大的疾病之一,因此迫切需要有效的治疗策略。然而由于肿瘤微环境(TME)的影响,现有治疗措施并没有达到人们对肿瘤治疗效果好、生存率高、不良反应小、预后好的期望。缺氧是实体恶性肿瘤的常见和重要特征。肿瘤缺氧微环境与肿瘤进展、侵袭性增加、转移潜力增强、肿瘤的转移密切相关。另外,缺氧还能增加肿瘤对放化疗等非手术治疗的抵抗 1 , 2。因此,增加肿瘤细胞含氧量对提高治疗效果并抑制肿瘤生长和转移有着重要意义。现如今,在世界范围内多种改善肿瘤缺氧的措施已被开发并在肿瘤治疗领域取得一定成果。具有携氧功能的血红蛋白氧载体(HBOCs)一直是提高组织氧含量的研究热点,它具有保质期长、无需交叉配血、污染风险低等优点,最初被用作血液替代品,然而越来越多的研究表明HBOCs也有助于增加肿瘤氧合及放化疗等抗肿瘤治疗的敏感性,为缓解肿瘤缺氧提供了新的方法。随着对其研究的不断深入,现已取得了许多新的进展。本文将对近5年来HBOCs研究进展及其在缓解肿瘤缺氧、增强肿瘤治疗效果方面的应用进行综述,为临床肿瘤治疗提供参考。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Li Y , Zhao L , Li XF . Hypoxia and the tumor microenvironment[J]. Technol Cancer Res Treat, 2021,20:15330338211036304. DOI: 10.1177/15330338211036304 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Xu M , Wang P , Sun S ,et al. Smart strategies to overcome tumor hypoxia toward the enhancement of cancer therapy[J]. Nanoscale, 2020,12(42):21519-21533. DOI: 10.1039/d0nr05501h .
返回引文位置Google Scholar
百度学术
万方数据
[3]
刘连生. 化学修饰血红蛋白的研究概况及进展[J]. 中国新技术新产品, 2009,17(11):10-11. DOI: 10.3969/j.issn.1673-9957.2009.11.010 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Cao M , Zhao Y , He H ,et al. New applications of HBOC-201: a 25-year review of the literature[J]. Front Med (Lausanne), 2021,8:794561. DOI: 10.3389/fmed.2021.794561 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Natanson C , Kern SJ , Lurie P ,et al. Cell-free hemoglobin-based blood substitutes and risk of myocardial infarction and death: a meta-analysis[J]. JAMA, 2008,299(19):2304-2312. DOI: 10.1001/jama.299.19.jrv80007 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Mackenzie CF , Moon-Massat PF , Shander A ,et al. When blood is not an option: factors affecting survival after the use of a hemoglobin-based oxygen carrier in 54 patients with life-threatening anemia[J]. Anesth Analg, 2010,110(3):685-693. DOI: 10.1213/ANE.0b013e3181cd473b .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Jahr JS , Moallempour M , Lim JC . HBOC-201, hemoglobin glutamer-250 (bovine), Hemopure (Biopure Corporation)[J]. Expert Opin Biol Ther, 2008,8(9):1425-1433. DOI: 10.1517/14712598.8.9.1425 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Jahr JS , Guinn NR , Lowery DR ,et al. Blood substitutes and oxygen therapeutics: a review[J]. Anesth Analg, 2021,132(1):119-129. DOI: 10.1213/ANE.0000000000003957 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Mer M , Hodgson E , Wallis L ,et al. Hemoglobin glutamer-250 (bovine) in South Africa: consensus usage guidelines from clinician experts who have treated patients[J]. Transfusion, 2016,56(10):2631-2636. DOI: 10.1111/trf.13726 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Muller CR , Williams AT , Munoz CJ ,et al. Safety profile of high molecular weight polymerized hemoglobins[J]. Transfusion, 2021,61(1):212-224. DOI: 10.1111/trf.16157 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Okamoto W , Hasegawa M , Usui T ,et al. Hemoglobin-albumin clusters as an artificial O 2 carrier: physicochemical properties and resuscitation from hemorrhagic shock in rats [J]. J Biomed Mater Res B Appl Biomater, 2022,110(8):1827-1838. DOI: 10.1002/jbm.b.35040 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Devineau S , Kiger L , Galacteros F ,et al. Manipulating hemoglobin oxygenation using silica nanoparticles: a novel prospect for artificial oxygen carriers[J]. Blood Adv, 2018,2(2):90-94. DOI: 10.1182/bloodadvances.2017012153 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Wang Q , Zhang R , You G ,et al. Influence of polydopamine-mediated surface modification on oxygen-release capacity of haemoglobin-based oxygen carriers[J]. Artif Cells Nanomed Biotechnol, 2018,46(sup2):484-492. DOI: 10.1080/21691401.2018.1459636 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Qi D , Li Q , Wang P ,et al. Haemoglobin site-specifically modified with ferulic acid to suppress the autoxidation[J]. Artif Cells Nanomed Biotechnol, 2017,45(6):1-5. DOI: 10.1080/21691401.2017.1309659 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Funaki R , Okamoto W , Endo C ,et al. Genetically engineered haemoglobin wrapped covalently with human serum albumins as an artificial O 2 carrier [J]. J Mater Chem B, 2020,8(6):1139-1145. DOI: 10.1039/c9tb02184a .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Morita Y , Takada R , Saito A ,et al. Genetically and chemically tuned haemoglobin-albumin trimers with superior O 2 transport efficiency [J]. Chem Commun (Camb), 2021,57(72):9144-9147. DOI: 10.1039/d1cc03684j .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Takase B , Higashimura Y , Asahina H ,et al. Liposome-encapsulated hemoglobin (HbV) transfusion rescues rats undergoing progressive lethal 85% hemorrhage as a result of an anti-arrhythmogenic effect on the myocardium[J]. Artif Organs, 2021,45(11):1391-1404. DOI: 10.1111/aor.14033 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
娜飞沙·斯马义,陈莉智,王相朦,. 生物携氧治疗剂的研究:作用与应用[J]. 中国组织工程研究, 2020,24(21):3416-3422. DOI: 10.3969/j.issn.2095-4344.2575 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Le Meur Y , Badet L , Essig M ,et al. First-in-human use of a marine oxygen carrier (M101) for organ preservation: a safety and proof-of-principle study[J]. Am J Transplant, 2020,20(6):1729-1738. DOI: 10.1111/ajt.15798 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Asong-Fontem N , Panisello-Rosello A , Lopez A ,et al. A novel oxygen carrier (M101) attenuates ischemia-reperfusion injuries during static cold storage in steatotic livers[J]. Int J Mol Sci, 2021,22(16):8542. DOI: 10.3390/ijms22168542 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Zimmerman D , DiIusto M , Dienes J ,et al. Direct comparison of oligochaete erythrocruorins as potential blood substitutes[J]. Bioeng Transl Med, 2017,2(2):212-221. DOI: 10.1002/btm2.10067 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Shannon AM , Bouchier-Hayes DJ , Condron CM ,et al. Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies[J]. Cancer Treat Rev, 2003,29(4):297-307. DOI: 10.1016/s0305-7372(03)00003-3 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Jahanban-Esfahlan R , de la Guardia M , Ahmadi D ,et al. Modulating tumor hypoxia by nanomedicine for effective cancer therapy[J]. J Cell Physiol, 2018,233(3):2019-2031. DOI: 10.1002/jcp.25859 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Wu W , Yang Q , Li T ,et al. Hemoglobin-based oxygen carriers combined with anticancer drugs may enhance sensitivity of radiotherapy and chemotherapy to solid tumors[J]. Artif Cells Blood Substit Immobil Biotechnol, 2009,37(4):163-165. DOI: 10.1080/10731190903043218 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Qi X , Wong BL , Lau SH ,et al. A hemoglobin-based oxygen carrier sensitized Cisplatin based chemotherapy in hepatocellular carcinoma[J]. Oncotarget, 2017,8(49):85311-85325. DOI: 10.18632/oncotarget.19672 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Lee NP , Chan KT , Choi MY ,et al. Oxygen carrier YQ23 can enhance the chemotherapeutic drug responses of chemoresistant esophageal tumor xenografts[J]. Cancer Chemother Pharmacol, 2015,76(6):1199-1207. DOI: 10.1007/s00280-015-2897-2 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Jiang MS , Yin XY , Qin B ,et al. Inhibiting hypoxia and chemotherapy-induced cancer cell metastasis under a valid therapeutic effect by an assistance of biomimetic oxygen delivery[J]. Mol Pharm, 2019,16(11):4530-4541. DOI: 10.1021/acs.molpharmaceut.9b00663 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
董德操,高燚秋,王红,. 聚合人脐带血血红蛋白氧载体增强仑伐替尼对肝癌移植瘤裸鼠疗效的初步实验[J]. 中国输血杂志, 2021,34(5):456-460. DOI: 10.13303/j.cjbt.issn.1004-549x.2021.05.005 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Rockwell S , Dobrucki IT , Kim EY ,et al. Hypoxia and radiation therapy: past history, ongoing research, and future promise[J]. Curr Mol Med, 2009,9(4):442-458. DOI: 10.2174/156652409788167087 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Graham K , Unger E . Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment[J]. Int J Nanomedicine, 2018,13:6049-6058. DOI: 10.2147/IJN.S140462 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Gao R , Gu Y , Yang Y ,et al. Robust radiosensitization of hemoglobin-curcumin nanoparticles suppresses hypoxic hepatocellular carcinoma[J]. J Nanobiotechnology, 2022,20(1):115. DOI: 10.1186/s12951-022-01316-w .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Zhang X , Xi Z , Machuki JO ,et al. Gold cube-in-cube based oxygen nanogenerator: a theranostic nanoplatform for modulating tumor microenvironment for precise chemo-phototherapy and multimodal imaging[J]. ACS Nano, 2019,13(5):5306-5325. DOI: 10.1021/acsnano.8b09786 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Xia D , Hang D , Li Y ,et al. Au-hemoglobin loaded platelet alleviating tumor hypoxia and enhancing the radiotherapy effect with low-dose X-ray[J]. ACS Nano, 2020,14(11):15654-15668. DOI: 10.1021/acsnano.0c06541 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Yan Y , Zhang L , Zuo Y ,et al. Immune checkpoint blockade in cancer immunotherapy: mechanisms, clinical outcomes, and safety profiles of PD-1/PD-L1 inhibitors[J]. Arch Immunol Ther Exp (Warsz), 2020,68(6):36. DOI: 10.1007/s00005-020-00601-6 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Jiang M , Qin B , Luo L ,et al. A clinically acceptable strategy for sensitizing anti-PD-1 treatment by hypoxia relief[J]. J Control Release, 2021,335:408-419. DOI: 10.1016/j.jconrel.2021.06.001 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Chow E , Lau JSH , Wai T ,et al. The anti-tumoral effects of the oxygen carrier YQ23 in a triple-negative breast cancer syngeneic model[J]. Transl Cancer Res, 2021,10(2):656-668. DOI: 10.21037/tcr-20-2768 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Dang J , He H , Chen D ,et al. Manipulating tumor hypoxia toward enhanced photodynamic therapy (PDT)[J]. Biomater Sci, 2017,5(8):1500-1511. DOI: 10.1039/c7bm00392g .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Liu WL , Liu T , Zou MZ ,et al. Aggressive man-made red blood cells for hypoxia-resistant photodynamic therapy[J]. Adv Mater, 2018,30(35):e1802006. DOI: 10.1002/adma.201802006 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
Wang J , Zhang B , Sun J ,et al. Nanomedicine-enabled modulation of tumor hypoxic microenvironment for enhanced cancer therapy[J]. Adv Ther (Weinh), 2020,3(1):1900083. DOI: 10.1002/adtp.201900083 .
返回引文位置Google Scholar
百度学术
万方数据
[40]
Guo X , Qu J , Zhu C ,et al. Synchronous delivery of oxygen and photosensitizer for alleviation of hypoxia tumor microenvironment and dramatically enhanced photodynamic therapy[J]. Drug Deliv, 2018,25(1):585-599. DOI: 10.1080/10717544.2018.1435751 .
返回引文位置Google Scholar
百度学术
万方数据
[41]
Nowak KM , Schwartz MR , Breza VR ,et al. Sonodynamic therapy: rapid progress and new opportunities for non-invasive tumor cell killing with sound[J]. Cancer Lett, 2022,532:215592. DOI: 10.1016/j.canlet.2022.215592.s
返回引文位置Google Scholar
百度学术
万方数据
[42]
Yin T , Yin J , Ran H ,et al. Hypoxia-alleviated sonodynamic therapy based on a hybrid protein oxygen carrier to enhance tumor inhibition[J]. Biomater Sci, 2021,10(1):294-305. DOI: 10.1039/d1bm01710a .
返回引文位置Google Scholar
百度学术
万方数据
[43]
Yuan M , Liang S , Zhou Y ,et al. A robust oxygen-carrying hemoglobin-based natural sonosensitizer for sonodynamic cancer therapy[J]. Nano Lett, 2021,21(14):6042-6050. DOI: 10.1021/acs.nanolett.1c01220 .
返回引文位置Google Scholar
百度学术
万方数据
[44]
Xu T , Ma Y , Yuan Q ,et al. Enhanced ferroptosis by oxygen-boosted phototherapy based on a 2-in-1 nanoplatform of ferrous hemoglobin for tumor synergistic therapy[J]. ACS Nano, 2020,14(3):3414-3425. DOI: 10.1021/acsnano.9b09426 .
返回引文位置Google Scholar
百度学术
万方数据
[45]
Sang W , Xie L , Wang G ,et al. Oxygen-enriched metal-phenolic X-ray nanoprocessor for cancer radio-radiodynamic therapy in combination with checkpoint blockade immunotherapy[J]. Adv Sci (Weinh), 2020,8(4):2003338. DOI: 10.1002/advs.202003338 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
陈绍水,Email: mocdef.6ab21ssnehcyfyb
B

杨晓倩, 陈绍水. 血红蛋白氧载体增强肿瘤治疗效果研究进展[J]. 国际医药卫生导报, 2022, 28(18): 2659-2663. DOI: 10.3760/cma.j.issn.1007-1245.2022.18.034.

C
所有作者均声明不存在利益冲突
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号