综述
ENGLISH ABSTRACT
CRISPR/Cas9基因编辑技术在构建眼科疾病动物模型中的应用
马啸辰
刘红玲 [综述]
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20190930-00425
Application of CRISPR/Cas9 gene editing technology in the construction of animal models of ophthalmic diseases
Ma Xiaochen
Liu Hongling
Authors Info & Affiliations
Ma Xiaochen
Department of Ophthalmology, First Affiliate Hospital of Harbin Medical University, Harbin 150001, China
Liu Hongling
Department of Ophthalmology, First Affiliate Hospital of Harbin Medical University, Harbin 150001, China
·
DOI: 10.3760/cma.j.cn115989-20190930-00425
678
103
0
0
3
1
PDF下载
APP内阅读
摘要

成簇规律间隔短回文重复序列及其相关蛋白9(CRISPR/Cas9)系统是一种利用RNA指导核酸内切酶进行基因编辑的技术,具有操作简便、靶向精准、周期短、基因敲除效率高等特点,被广泛用于多个物种的基因编辑及疾病基因治疗中。目前,采用该技术已构建了多种眼科疾病动物模型,如角膜营养不良模型( UBIAD1TGF- β R124C基因突变)、青光眼模型( MYOC Y435H、 OPTN E50K和 PMEL基因突变)、白内障模型( GJA8KPNA4c- MafAQP5PIKFYVE基因突变)、Leber先天性黑矇动物模型( KCNJ13LCA5基因突变)、视网膜母细胞瘤动物模型( RB1/ RBL基因突变)和视网膜色素变性动物模型( HKDC1C8ORF37CERKLPRCDASRGL1LRATPDE6B基因突变)等。还有研究者采用该基因编辑技术进一步证实了 MFRPCPAMD8Pax6FREM基因在动物眼部发育过程中的作用。本文就CRISPR/Cas9基因编辑技术在构建眼科疾病动物模型中的应用进行综述。

CRISPR-Cas系统;基因编辑;眼病;动物模型
ABSTRACT

The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated endonuclease 9 (Cas9) technology is a gene editing technology that uses RNA to guide endonucleases.This technology is rapidly used in gene editing and disease gene therapy in multiple species because of its easy operation, precise targeting, short cycle, and high gene knockout efficiency.At present, the corneal dystrophy model ( UBIAD1, TGF- β R124C gene mutations), glaucoma model ( MYOC Y435H, OPTN E50K and PMEL gene mutations), cataract model ( GJA8, KPNA4, C- MAF, AQP5 and PIKFYVE gene mutations), Leber congenital amaurosis animal model ( KCNJ13 and LCA5 gene mutations), retinblastoma animal model ( RB1/ RBL gene mutations) and retinitis pigmentosa models ( HKDC1, C8ORF37, CERKL, PRCD, ASRGL1, LRAT and PDE6B gene mutations) have been constructed by using this technology.The role of MFRP, CPAMD8, Pax6, and FREM genes in animal eye development has been further confirmed via this technology.The application of CRISPR/Cas9 gene editing technology in the construction of animal models of ophthalmic diseases was reviewed in this article.

CRISPR-Cas systems;Gene editing;Eye diseases;Disease models, animal
Liu Hongling, Email: mocdef.3ab61lhuildyh
引用本文

马啸辰,刘红玲. CRISPR/Cas9基因编辑技术在构建眼科疾病动物模型中的应用[J]. 中华实验眼科杂志,2022,40(10):972-975.

DOI:10.3760/cma.j.cn115989-20190930-00425

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
基因编辑是近年来眼科实验研究的热点领域。眼球解剖结构独特,角膜透明,借助裂隙灯显微镜、光相干断层扫描等仪器,方便对眼部疾病进行观察 [ 1 ];另外,眼部缺乏淋巴管结构,眼球处于相对免疫赦免状态,对新抗原的免疫应答反应较弱,更适合外源性基因编辑治疗 [ 2 ]。Ⅱ型CRISPR/Cas系统由前核糖体RNA、Cas9和反式激活CRISPR RNA(crRNA)组成,其中,Cas9经crRNA引导后与互补DNA靶序列结合,进而产生位点特异性DNA双链断裂,理论上可以在任何基因位点上实现DNA切割 [ 3 ]。CRISPR/Cas9基因编辑技术不仅在目的基因设计合成筛选上更为简便快捷,而且可以在单个细胞内同时靶向编辑多个基因位点,成倍地提高了基因编辑的效率,但Cas蛋白的不稳定性和脱靶效应在一定程度上限制了其应用 [ 4 ]。基因编辑动物属于原发性疾病模型,其表型持续时间长,并可稳定遗传。对于已明确致病基因的疾病,构建基因编辑动物模型可真实地模拟疾病发生和演变过程。应用胚胎细胞克隆技术,还可批量制备基因型一致的动物模型,减少个体差异对实验结果的影响 [ 5 ]。本文就CRISPR/Cas9基因编辑技术在构建眼科疾病动物模型中的应用进展进行综述。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Spaide RF , Fujimoto JG , Waheed NK ,et al. Optical coherence tomography angiography[J]. Prog Retin Eye Res 2018641-55. DOI: 10.1016/j.preteyeres.2017.11.003 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Pleyer U , Pohlmann D Anatomy and immunology of the eye[J]. Z Rheumatol 201776(8)∶656-663. DOI: 10.1007/s00393-017-0344-y .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Cho S , Shin J , Cho BK . Applications of CRISPR/Cas system to bacterial metabolic engineering[J/OL]. Int J Mol Sci 201819(4)∶1089[2022-03-10]. https://pubmed.ncbi.nlm.nih.gov/29621180/. DOI: 10.3390/ijms19041089 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Suzuki K , Tsunekawa Y , Hernandez-Benitez R ,et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration [J]. Nature 2016540(7631)∶144-149. DOI: 10.1038/nature20565 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
吴世靖睢瑞芳CRISPR/Cas9技术在遗传性眼病基因治疗中的应用[J]. 中华实验眼科杂志 201836(11)∶892-896. DOI: 10.3760/cma.j.issn.2095-0160.2018.11.016 .
返回引文位置Google Scholar
百度学术
万方数据
Wu SJ , Sui RF . Applications of CRISPR/Cas9 genome editing technology in gene therapy for hereditary eye diseases[J]. Chin J Exp Ophthalmol 201836(11)∶892-896. DOI: 10.3760/cma.j.issn.2095-0160.2018.11.016 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[6]
Xie J , Li L Functional study of SCCD pathogenic gene UBIAD1 (review) [J/OL]. Mol Med Rep 202124(4)∶706[2022-03-12]. https://pubmed.ncbi.nlm.nih.gov/34368857/. DOI: 10.3892/mmr.2021.12345 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Dong F , Jin X , Boettler MA ,et al. A mouse model of schnyder corneal dystrophy with the N100S point mutation[J/OL]. Sci Rep 20188(1)∶10219[2022-03-15]. https://pubmed.ncbi.nlm.nih.gov/29977031/. DOI: 10.1038/s41598-018-28545-0 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Han KE , Choi SI , Kim TI ,et al. Pathogenesis and treatments of TGFBI corneal dystrophies[J]. Prog Retin Eye Res 20165067-88. DOI: 10.1016/j.preteyeres.2015.11.002 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Kitamoto K , Taketani Y , Fujii W ,et al. Generation of mouse model of TGFBI-R124C corneal dystrophy using CRISPR/Cas9-mediated homology-directed repair[J/OL]. Sci Rep 202010(1)∶2000[2022-03-16]. https://pubmed.ncbi.nlm.nih.gov/32029872/. DOI: 10.1038/s41598-020-58876-w .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Kwon YH , Fingert JH , Kuehn MH ,et al. Primary open-angle glaucoma[J]. N Engl J Med 2009360(11)∶1113-1124. DOI: 10.1056/NEJMra0804630 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Lynch JM , Li B , Katoli P ,et al. Binding of a glaucoma-associated myocilin variant to the αB-crystallin chaperone impedes protein clearance in trabecular meshwork cells[J]. J Biol Chem 2018293(52)∶20137-20156. DOI: 10.1074/jbc.RA118.004325 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
VanderWall KB , Huang KC , Pan Y ,et al. Retinal ganglion cells with a glaucoma OPTN (E50K) mutation exhibit neurodegenerative phenotypes when derived from three-dimensional retinal organoids [J]. Stem Cell Reports 202015(1)∶52-66. DOI: 10.1016/j.stemcr.2020.05.009 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Liu X , Wang Q , Shao Z ,et al. Proteomic analysis of aged and OPTN E50K retina in the development of normal tension glaucoma [J]. Hum Mol Genet 202130(11)∶1030-1044. DOI: 10.1093/hmg/ddab099 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Hou M , Shao Z , Zhang S ,et al. Age-related visual impairments and retinal ganglion cells axonal degeneration in a mouse model harboring OPTN (E50K) mutation [J/OL]. Cell De ath Dis 202213(4)∶362[2022-03-16]. https://pubmed.ncbi.nlm.nih.gov/35436991/. DOI: 10.1038/s41419-022-04836-3 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Lahola-Chomiak AA , Footz T , Nguyen-Phuoc K ,et al. Non-synonymous variants in premelanosome protein (PMEL) cause ocular pigment dispersion and pigmentary glaucoma[J]. Hum Mol Genet 201928(8)∶1298-1311. DOI: 10.1093/hmg/ddy429 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Ding N , Chen Z , Song X ,et al. Novel mutation of GJA8 in autosomal dominant congenital cataracts [J/OL]. Ann Transl Med 20208(18)∶1127[2022-03-26]. https://pubmed.ncbi.nlm.nih.gov/33240976/. DOI: 10.21037/atm-20-4663 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Yuan L , Yao H , Xu Y ,et al. CRISPR/Cas9-mediated mutation of αA-crystallin gene induces congenital cataracts in rabbits[J]. Invest Ophthalmol Vis Sci 201758(6)∶BIO34-BIO41. DOI: 10.1167/iovs.16-21287 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Mei S , Wu Y , Wang Y ,et al. Disruption of PIKFYVE causes congenital cataract in human and zebrafish[J/OL]. Elife 202211e71256[2022-03-18]. https://pubmed.ncbi.nlm.nih.gov/35023829/. DOI: 10.7554/eLife.71256 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Ping X , Cheng Y , Bao J ,et al. KPNA4 is involved in cataract formation via the nuclear import of p53[J/OL]. Gene 2021786145621[2022-03-18]. https://pubmed.ncbi.nlm.nih.gov/33798680/. DOI: 10.1016/j.gene.2021.145621 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Gletten RB , Cantrell LS , Bhattacharya S ,et al. Lens aquaporin-5 inserts into bovine fiber cell plasma membranes via unconventional protein secretion[J/OL]. Invest Ophthalmol Vis Sci 202263(8)∶5[2022-03-18]. https://pubmed.ncbi.nlm.nih.gov/35816045/. DOI: 10.1167/iovs.63.8.5 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Tang S , Di G , Hu S ,et al. AQP5 regulates vimentin expression via miR-124-3p.1 to protect lens transparency[J/OL]. Exp Eye Res 2021205108485[2022-03-19]. https://pubmed.ncbi.nlm.nih.gov/33582182/. DOI: 10.1016/j.exer.2021.108485 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Kanzaki Y , Fujita H , Sato K ,et al. KCNJ13 gene deletion impairs cell alignment and phagocytosis in retinal pigment epithelium derived from human-induced pluripotent stem cells [J/OL]. Invest Ophthalmol Vis Sci 202061(5)∶38[2022-03-22]. https://pubmed.ncbi.nlm.nih.gov/32437550/. DOI: 10.1167/iovs.61.5.38 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Zhong H , Chen Y , Li Y ,et al. CRISPR-engineered mosaicism rapidly reveals that loss of Kcnj13 function in mice mimics human disease phenotypes[J/OL]. Sci Rep 201558366[2022-03-25]. https://pubmed.ncbi.nlm.nih.gov/25666713/. DOI: 10.1038/srep08366 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Corton M , Avila-Fernandez A , Vallespín E ,et al. Involvement of LCA5 in Leber congenital amaurosis and retinitis pigmentosa in the Spanish population[J]. Ophthalmology 2014121(1)∶399-407. DOI: 10.1016/j.ophtha.2013.08.028 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Qu Z , Yimer TA , Xie S ,et al. Knocking out lca5 in zebrafish causes cone-rod dystrophy due to impaired outer segment protein trafficking [J]. Biochim Biophys Acta Mol Basis Dis 20191865(10)∶2694-2705. DOI: 10.1016/j.bbadis.2019.07.009 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Naert T , Colpaert R , Van Nieuwenhuysen T ,et al. CRISPR/Cas9 mediated knockout of rb1 and rbl1 leads to rapid and penetrant retinoblastoma development in Xenopus tropicalis[J/OL]. Sci Rep 2016635264[2022-03-25]. https://pubmed.ncbi.nlm.nih.gov/27739525/. DOI: 10.1038/srep35264 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Wang F , Wang Y , Zhang B ,et al. A missense mutation in HK1 leads to autosomal dominant retinitis pigmentosa [J]. Invest Ophthalmol Vis Sci 201455(11)∶7159-7164. DOI: 10.1167/iovs.14-15520 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Zhang L , Sun Z , Zhao P ,et al. Whole-exome sequencing revealed HKDC1 as a candidate gene associated with autosomal-recessive retinitis pigmentosa [J]. Hum Mol Genet 201827(23)∶4157-4168. DOI: 10.1093/hmg/ddy281 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Sharif AS , Yu D , Loertscher S ,et al. C8ORF37 is required for photoreceptor outer segment disc morphogenesis by maintaining outer segment membrane protein homeostasis[J]. J Neurosci 201838(13)∶3160-3176. DOI: 10.1523/JNEUROSCI.2964-17.2018 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Parain K , Lourdel S , Donval A ,et al. CRISPR/Cas9-mediated models of retinitis pigmentosa reveal differential proliferative response of müller cells between Xenopus laevis and Xenopus tropicalis[J/OL]. Cells 202211(5)∶807[2022-08-25]. https://pubmed.ncbi.nlm.nih.gov/35269429/. DOI: 10.3390/cells11050807 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Domènech EB , Andrés R , López-Iniesta MJ ,et al. A new cerkl mouse model generated by CRISPR-Cas9 shows progressive retinal degeneration and altered morphological and electrophysiological phenotype[J/OL]. Invest Ophthalmol Vis Sci 202061(8)∶14[2022-03-25]. https://pubmed.ncbi.nlm.nih.gov/32658961/. DOI: 10.1167/iovs.61.8.14 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Sechrest ER , Murphy J , Senapati S ,et al. Loss of PRCD alters number and packaging density of rhodopsin in rod photoreceptor disc membranes[J/OL]. Sci Rep 202010(1)∶17885[2022-03-25]. https://pubmed.ncbi.nlm.nih.gov/33087780/. DOI: 10.1038/s41598-020-74628-2 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Zhou Y , Tian W , Jiang X ,et al. Deletion of Asrgl1 leads to photoreceptor degeneration in mice[J/OL]. Front Cell Dev Biol 20219783547[2022-03-26]. https://pubmed.ncbi.nlm.nih.gov/35118070/. DOI: 10.3389/fcell.2021.783547 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Koster C , van den Hurk KT , Lewallen CF ,et al. The Lrat -/- rat:CRISPR/Cas9 construction and phenotyping of a new animal model for retinitis pigmentosa [J/OL]. Int J Mol Sci 202122(13)∶7234[2022-03-25]. https://pubmed.ncbi.nlm.nih.gov/34281288/. DOI: 10.3390/ijms22137234 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Yeo JH , Jung BK , Lee H ,et al. Development of a Pde6b gene knockout rat model for studies of degenerative retinal diseases [J]. Invest Ophthalmol Vis Sci 201960(5)∶1519-1526. DOI: 10.1167/iovs.18-25556 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Collery RF , Volberding PJ , Bostrom JR ,et al. Loss of zebrafish Mfrp causes nanophthalmia,hyperopia,and accumulation of subretinal macrophages[J]. Invest Ophthalmol Vis Sci 201657(15)∶6805-6814. DOI: 10.1167/iovs.16-19593 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Prem Senthil M , Knight L , Taranath D ,et al. Comparison of anterior segment abnormalities in individuals with FOXC1 and PITX2 variants [J]. Cornea 202241(8)∶1009-1015. DOI: 10.1097/ICO.0000000000003020 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Bonet-Fernández JM , Aroca-Aguilar JD , Corton M ,et al. CPAMD8 loss-of-function underlies non-dominant congenital glaucoma with variable anterior segment dysgenesis and abnormal extracellular matrix[J]. Hum Genet 2020139(10)∶1209-1231. DOI: 10.1007/s00439-020-02164-0 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
Nakanishi T , Kato Y , Matsuura T ,et al. CRISPR/Cas-mediated targeted mutagenesis in Daphnia magna[J/OL]. PLoS One 20149(5)∶e98363[2022-03-25]. https://pubmed.ncbi.nlm.nih.gov/24878568/. DOI: 10.1371/journal.pone.0098363 .
返回引文位置Google Scholar
百度学术
万方数据
[40]
Yasue A , Kono H , Habuta M ,et al. Relationship between somatic mosaicism of Pax6 mutation and variable developmental eye abnormalities-an analysis of CRISPR genome-edited mouse embryos [J/OL]. Sci Rep 20177(1)∶53[2022-03-26]. https://pubmed.ncbi.nlm.nih.gov/28246397/. DOI: 10.1038/s41598-017-00088-w .
返回引文位置Google Scholar
百度学术
万方数据
[41]
van Haelst MM , Maiburg M , Baujat G ,et al. Molecular study of 33 families with Fraser syndrome new data and mutation review[J]. Am J Med Genet A 2008146A(17)∶2252-2257. DOI: 10.1002/ajmg.a.32440 .
返回引文位置Google Scholar
百度学术
万方数据
[42]
Zhang X , Wang D , Dongye M ,et al. Loss-of-function mutations in FREM2 disrupt eye morphogenesis[J]. Exp Eye Res 2019181302-312. DOI: 10.1016/j.exer.2019.02.013 .
返回引文位置Google Scholar
百度学术
万方数据
[43]
Moore BA , Flenniken AM , Clary D ,et al. Genome-wide screening of mouse knockouts reveals novel genes required for normal integumentary and oculocutaneous structure and function[J/OL]. Sci Rep 20199(1)∶11211[2022-03-26]. https://pubmed.ncbi.nlm.nih.gov/31371754/. DOI: 10.1038/s41598-019-47286-2 .
返回引文位置Google Scholar
百度学术
万方数据
[44]
范祥雨徐建江CRISPR/Cas9基因组编辑技术在眼科疾病研究中的应用[J]. 中华实验眼科杂志 201836(7)∶553-558. DOI: 10.3760/cma.j.issn.2095-0160.2018.07.015 .
返回引文位置Google Scholar
百度学术
万方数据
Fan XY , Xu JJ . Application of CRISPR/Cas9 genome editing technology in the research of eye diseases[J]. Chin J Exp Ophthalmol 201836(7)∶553-558. DOI: 10.3760/cma.j.issn.2095-0160.2018.07.015 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
备注信息
A
刘红玲,Email: mocdef.3ab61lhuildyh
B
所有作者均声明不存在利益冲突
C
国家自然科学基金项目 (81301325)
中国初级卫生保健基金会眼科新技术孵化基金项目 (FB2022008629)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号