综述
ENGLISH ABSTRACT
表观遗传调控在视网膜变性疾病中的应用
张华
庞继景 [综述]
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20191015-00442
Epigenetic regulation and retinal degenerative diseases
Zhang Hua
Pang Jijing
Authors Info & Affiliations
Zhang Hua
The West China Institutes for Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu 610041, China
Pang Jijing
Department of Genetic Diseases, He Eye Specialist Hospital, Shenyang 110000, China
·
DOI: 10.3760/cma.j.cn115989-20191015-00442
512
74
0
0
1
0
PDF下载
APP内阅读
摘要

表观遗传是指在核苷酸序列不变的情况下发生的基因表达可遗传的改变。表观遗传调控机制多样,其中DNA甲基化、组蛋白修饰和非编码RNA调控研究较深入。表观遗传调控与多种人类疾病相关,在视网膜变性疾病发生或发展过程中,DNA甲基化、组蛋白乙酰化和非编码RNA调控等多种表观遗传调控方式发生改变。DNA甲基化是视网膜变性的重要调控方式之一,异常的DNA甲基化发生在视网膜色素变性(RP)、年龄相关性黄斑变性(AMD)、炎症及氧化应激等病变过程;组蛋白乙酰化与RP、糖尿病视网膜病变(DR)、青光眼、视网膜神经缺血性损伤等病变相关;非编码RNA与RP、AMD、病理性血管生成、DR等病变相关。本文就表观遗传调控在视网膜变性疾病中的应用做一综述。

表观遗传调控;DNA甲基化;组蛋白乙酰化;非编码RNA;视网膜变性
ABSTRACT

Epigenetics pertains to heritable alterations in gene expression when the nucleotide sequence remains unchanged.Epigenetic regulation mechanisms are diverse, among which DNA methylation, histone modification and non-coding RNA (ncRNA) regulation have been studied in depth.Epigenetic regulation is associated with a variety of human diseases.In the occurrence and development of retinal degenerative diseases, many epigenetic regulation processes such as DNA methylation, histone acetylation and ncRNA regulation have changed.DNA methylation is one of the important regulation processes in retinal degeneration.Aberrant DNA methylation patterns are associated with retinitis pigmentosa (RP), age-related macular degeneration (AMD), inflammation and oxidative stress.Histone acetylation is associated with RP, diabetic retinopathy (DR), glaucoma and retinal nerve ischemic injury.NcRNA is associated with RP, AMD, pathological angiogenesis, and DR.In this article, the application of epigenetic regulation in retinal degeneration was reviewed.

Epigenetic regulation;DNA methylation;Histone acetylation;Non-coding RNA;Retinal degeneration
Pang Jijing, Email: mocdef.labiamtohhpognapj
引用本文

张华,庞继景. 表观遗传调控在视网膜变性疾病中的应用[J]. 中华实验眼科杂志,2022,40(10):981-985.

DOI:10.3760/cma.j.cn115989-20191015-00442

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
表观遗传是指在基因核苷酸序列不发生改变的情况下,基因表达和功能发生了可遗传的变化,并最终导致表型的变化。虽然生物遗传信息主要受DNA序列调控,但也受表观遗传修饰调控,表观遗传调控方式多样,机体中DNA甲基化、组蛋白修饰、非编码RNA(non-coding RNA,ncRNA)调控是常见的表观遗传调控基因表达方式 [ 1 ]。随着人类表观基因组计划的深入研究,表观遗传学得到了飞速发展,目前已成为生物医学研究的一个热点领域。表观遗传修饰发生在癌症、神经系统疾病、心血管系统疾病、眼部疾病等多种人类疾病 [ 2 ]。广义的视网膜变性类疾病是一组以视网膜色素上皮细胞和光感受器细胞等视网膜神经元变性凋亡为主要特征的致盲性眼底疾病,包括视网膜色素变性(retinitis pigmentosa,RP)、年龄相关性黄斑变性(age-related macular degeneration,AMD)、糖尿病视网膜病变(diabetic retinopathy,DR)、青光眼等。表观遗传调控在视网膜变性疾病中起重要作用。本文将对主要表观遗传调控方式在视网膜变性疾病中的研究现状及未来展望做一介绍。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
张梦珂表观遗传学简介[J]. 生物学教学 201338(11)∶72-73.
返回引文位置Google Scholar
百度学术
万方数据
[2]
He Shikun , Ouyang Sha . 表观遗传学:生物医学研究和眼科研究的新时代[J]. 中华实验眼科杂志 201634(10)∶865-873. DOI: 10.3760/cma.j.issn.2095-0160.2016.10.001 .
返回引文位置Google Scholar
百度学术
万方数据
He SK , Ouyang S Epigenetics—the new era of biomedical and ophthalmological research[J]. Chin J Exp Ophthalmol 201634(10)∶865-873. DOI: 10.3760/cma.j.issn.2095-0160.2016.10.001 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[3]
Zhang H , Dai X , Qi Y ,et al. Histone deacetylases inhibitors in the treatment of retinal degenerative diseases:overview and perspectives[J/OL]. J Ophthalmol 20152015250812[2022-01-05]. https://pubmed.ncbi.nlm.nih.gov/26137316/. DOI: 10.1155/2015/250812 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Corso-Díaz X , Jaeger C , Chaitankar V ,et al. Epigenetic control of gene regulation during development and disease:a view from the retina[J]. Prog Retin Eye Res 2018651-27. DOI: 10.1016/j.preteyeres.2018.03.002 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Zhe Jing , Xiaomeng Wu . 关注和跟踪表观遗传研究在眼科疾病诊治中的应用[J]. 中华实验眼科杂志 201533(8)∶673-677. DOI: 10.3760/cma.j.issn.2095-0160.2015.08.001 .
返回引文位置Google Scholar
百度学术
万方数据
Jing Z , Wu XM . Epigenetics,diseases and therapy in ophthalmology[J]. Chin J Exp Ophthalmol 201533(8)∶673-677. DOI: 10.3760/cma.j.issn.2095-0160.2015.08.001 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[6]
Liu MM , Chan CC , Tuo J Epigenetics in ocular diseases[J]. Curr Genomics 201314(3)∶166-172. DOI: 10.2174/1389202911314030002 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Wahlin KJ , Enke RA , Fuller JA ,et al. Epigenetics and cell death:DNA hypermethylation in programmed retinal cell death[J/OL]. PLoS One 20138(11)∶e79140[2022-01-05]. https://pubmed.ncbi.nlm.nih.gov/24244436/. DOI: 10.1371/journal.pone.0079140 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Singh RK , Mallela RK , Hayes A ,et al. Dnmt1,Dnmt3a and Dnmt3b cooperate in photoreceptor and outer plexiform layer development in the mammalian retina[J]. Exp Eye Res 2017159132-146. DOI: 10.1016/j.exer.2016.11.014 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Rhee KD , Yu J , Zhao CY ,et al. Dnmt1-dependent DNA methylation is essential for photoreceptor terminal differentiation and retinal neuron survival[J/OL]. Cell Death Dis 20123e427[2022-01-06]. https://pubmed.ncbi.nlm.nih.gov/23171847/. DOI: 10.1038/cddis.2012.165 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Farinelli P , Perera A , Arango-Gonzalez B ,et al. DNA methylation and differential gene regulation in photoreceptor cell death[J/OL]. Cell Death Dis 20145e1558[2022-01-06]. https://pubmed.ncbi.nlm.nih.gov/25476906/. DOI: 10.1038/cddis.2014.512 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Wei L , Liu B , Tuo J ,et al. Hypomethylation of the IL17RC promoter associates with age-related macular degeneration[J]. Cell Rep 20122(5)∶1151-1158. DOI: 10.1016/j.celrep.2012.10.013 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Maugeri A , Barchitta M , Fallico M ,et al. Characterization of SIRT1/DNMTs functions and LINE-1 methylation in patients with age-related macular degeneration[J/OL]. J Clin Med 20198(2)∶159[2022-01-07]. https://pubmed.ncbi.nlm.nih.gov/30717113/. DOI: 10.3390/jcm8020159 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Hunter A , Spechler PA , Cwanger A ,et al. DNA methylation is associated with altered gene expression in AMD[J]. Invest Ophthalmol Vis Sci 201253(4)∶2089-2105. DOI: 10.1167/iovs.11-8449 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Maugeri A , Barchitta M , Mazzone MG ,et al. Resveratrol modulates SIRT1 and DNMT functions and restores LINE-1 methylation levels in ARPE-19 cells under oxidative stress and inflammation[J/OL]. Int J Mol Sci 201819(7)∶2118[2022-01-07]. https://pubmed.ncbi.nlm.nih.gov/30037017/. DOI: 10.3390/ijms19072118 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Elmasry K , Mohamed R , Sharma I ,et al. Epigenetic modifications in hyperhomocysteinemia:potential role in diabetic retinopathy and age-related macular degeneration[J/OL]. Oncotarget 20189(16)∶12562-12590[2022-01-08]. https://pubmed.ncbi.nlm.nih.gov/29560091/. DOI: 10.18632/oncotarget.24333 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
张珍珍去乙酰化酶抑制与视网膜病变[J]. 中华实验眼科杂志 201230(9)∶861-864. DOI: 10.3760/cma.j.issn.2095-0160.2012.09.023 .
返回引文位置Google Scholar
百度学术
万方数据
Zhang ZZ . Histone deacetylases inhibition and retinopathy[J]. Chin J Exp Ophthalmol 201230(9)∶861-864. DOI: 10.3760/cma.j.issn.2095-0160.2012.09.023 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[17]
Daly C , Yin J , Kennedy BN . Histone deacetylase:therapeutic targets in retinal degeneration[J]. Adv Exp Med Biol 2016854455-461. DOI: 10.1007/978-3-319-17121-0_61 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Zhang Z , Qin X , Tong N ,et al. Valproic acid-mediated neuroprotection in retinal ischemia injury via histone deacetylase inhibition and transcriptional activation[J]. Exp Eye Res 201294(1)∶98-108. DOI: 10.1016/j.exer.2011.11.013 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Zhang ZZ , Gong YY , Shi YH ,et al. Valproate promotes survival of retinal ganglion cells in a rat model of optic nerve crush[J]. Neuroscience 2012224282-293. DOI: 10.1016/j.neuroscience.2012.07.056 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Kimura A , Namekata K , Guo X ,et al. Valproic acid prevents NMDA-induced retinal ganglion cell death via stimulation of neuronal TrkB receptor signaling[J]. Am J Pathol 2015185(3)∶756-764. DOI: 10.1016/j.ajpath.2014.11.005 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Kimura A , Guo X , Noro T ,et al. Valproic acid prevents retinal degeneration in a murine model of normal tension glaucoma[J]. Neurosci Lett 2015588108-113. DOI: 10.1016/j.neulet.2014.12.054 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Biermann J , Grieshaber P , Goebel U ,et al. Valproic acid-mediated neuroprotection and regeneration in injured retinal ganglion cells[J]. Invest Ophthalmol Vis Sci 201051(1)∶526-534. DOI: 10.1167/iovs.09-3903 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
李晓华表观遗传学与视网膜疾病的关联研究[J]. 中华实验眼科杂志 201129(8)∶753-758. DOI: 10.3760/cma.j.issn.2095-0160.2011.08.020 .
返回引文位置Google Scholar
百度学术
万方数据
Li XH . Association of retinal diseases with epigenetics mechanism[J]. Chin J Exp Ophthalmol 201129(8)∶753-758. DOI: 10.3760/cma.j.issn.2095-0160.2011.08.020 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[24]
Trifunović D , Petridou E , Comitato A ,et al. Primary rod and cone degeneration is prevented by HDAC inhibition[J]. Adv Exp Med Biol 20181074367-373. DOI: 10.1007/978-3-319-75402-4_45 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Zhou C , Luo D , Xia W ,et al. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) contributes to the neuroprotective effects of histone deacetylase inhibitors in retinal ischemia-reperfusion injury[J]. Neuroscience 201941825-36. DOI: 10.1016/j.neuroscience.2019.08.027 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Crosson CE , Mani SK , Husain S ,et al. Inhibition of histone deacetylase protects the retina from ischemic injury[J]. Invest Ophthalmol Vis Sci 201051(7)∶3639-3645. DOI: 10.1167/iovs.09-4538 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Chan N , He S , Spee CK ,et al. Attenuation of choroidal neovascularization by histone deacetylase inhibitor[J/OL]. PLoS One 201510(3)∶e0120587[2022-01-09]. https://pubmed.ncbi.nlm.nih.gov/25807249/. DOI: 10.1371/journal.pone.0120587 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Chindasub P , Lindsey JD , Duong-Polk K ,et al. Inhibition of histone deacetylases 1 and 3 protects injured retinal ganglion cells[J]. Invest Ophthalmol Vis Sci 201354(1)∶96-102. DOI: 10.1167/iovs.12-10850 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Anasagasti A , Ezquerra-Inchausti M , Barandika O ,et al. Expression profiling analysis reveals key microRNA-mRNA interactions in early retinal degeneration in retinitis pigmentosa[J]. Invest Ophthalmol Vis Sci 201859(6)∶2381-2392. DOI: 10.1167/iovs.18-24091 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Huang P , Sun J , Wang F ,et al. MicroRNA expression patterns involved in amyloid beta-induced retinal degeneration[J]. Invest Ophthalmol Vis Sci 201758(3)∶1726-1735. DOI: 10.1167/iovs.16-20043 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Askou AL , Alsing S , Holmgaard A ,et al. Dissecting microRNA dysregulation in age-related macular degeneration:new targets for eye gene therapy[J]. Acta Ophthalmol 201896(1)∶9-23. DOI: 10.1111/aos.13407 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Lambert NG , ElShelmani H , Singh MK ,et al. Risk factors and biomarkers of age-related macular degeneration[J]. Prog Retin Eye Res 20165464-102. DOI: 10.1016/j.preteyeres.2016.04.003 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Zhang J , Wang J , Zheng L ,et al. miR-25 mediates retinal degeneration via inhibiting ITGAV and PEDF in rat[J]. Curr Mol Med 201717(5)∶359-374. DOI: 10.2174/1566524018666171205122540 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Murad N , Kokkinaki M , Gunawardena N ,et al. miR-184 regulates ezrin,LAMP-1 expression,affects phagocytosis in human retinal pigment epithelium and is downregulated in age-related macular degeneration[J]. FEBS J 2014281(23)∶5251-5264. DOI: 10.1111/febs.13066 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Gemenetzi M , Lotery AJ . The role of epigenetics in age-related macular degeneration[J]. Eye (Lond) 201428(12)∶1407-1417. DOI: 10.1038/eye.2014.225 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Zhu W , Meng YF , Xing Q ,et al. Identification of lncRNAs involved in biological regulation in early age-related macular degeneration[J]. Int J Nanomedicine 2017127589-7602. DOI: 10.2147/IJN.S140275 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Zhu YX , Yao J , Liu C ,et al. Long non-coding RNA MEG3 silencing protects against light-induced retinal degeneration[J]. Biochem Biophys Res Commun 2018496(4)∶1236-1242. DOI: 10.1016/j.bbrc.2018.01.177 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Qiu GZ , Tian W , Fu HT ,et al. Long noncoding RNA-MEG3 is involved in diabetes mellitus-related microvascular dysfunction[J]. Biochem Biophys Res Commun 2016471(1)∶135-141. DOI: 10.1016/j.bbrc.2016.01.164 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
Chen X , Jiang C , Qin B ,et al. LncRNA ZNF503-AS1 promotes RPE differentiation by downregulating ZNF503 expression[J/OL]. Cell Death Dis 20178(9)∶e3046[2022-01-10]. https://pubmed.ncbi.nlm.nih.gov/28880276/. DOI: 10.1038/cddis.2017.382 .
返回引文位置Google Scholar
百度学术
万方数据
[40]
庞继景关注遗传性视网膜疾病的治疗性方法[J]. 中华实验眼科杂志 201937(9)∶689-693. DOI: 10.3760/cma.j.issn.2095-0160.2019.09.001 .
返回引文位置Google Scholar
百度学术
万方数据
Pang JJ . Focus on the treatment of inherited retinal diseases[J]. Chin J Exp Ophthalmol 201937(9)∶689-693. DOI: 10.3760/cma.j.issn.2095-0160.2019.09.001 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[41]
Moore LD , Le T , Fan G DNA methylation and its basic function[J]. Neuropsychopharmacol 201338(1)∶23-38. DOI: 10.1038/npp.2012.112 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
庞继景,Email: mocdef.labiamtohhpognapj
B
所有作者均声明不存在利益冲突
C
国家自然科学基金项目 (81600771、81970840、81371060)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号