实验研究
ENGLISH ABSTRACT
以聚乙二醇水凝胶膜为载体构建的角膜上皮移植片对LSCD治疗的可行性
郭译远
贤惠敏
Shereen Tan
Qiang Fu
金鑫
Mark Daniel
Greg.G. Qiao
张弘
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20201125-00794
Feasibility of corneal epithelial transplantation with polyethylene glycol hydrogel membrane as a carrier for limbal stem cell deficiency
Guo Yiyuan
Xian Huimin
Shereen Tan
Qiang Fu
Jin Xin
Mark Daniel
Greg.G. Qiao
Zhang Hong
Authors Info & Affiliations
Guo Yiyuan
Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
Xian Huimin
Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, China
Shereen Tan
Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3001, Australia
Qiang Fu
Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3001, Australia
The School of Civil and Environmental Engineering, University of Technology Sydney, Sydney 2000, Australia
Jin Xin
Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
Mark Daniel
Centre for Eye Research Australia (CERA), Royal Victorian Eye & Ear Hospital, Melbourne 3002, Australia
Greg.G. Qiao
Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, China
Zhang Hong
Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
·
DOI: 10.3760/cma.j.cn115989-20201125-00794
0
0
0
0
0
0
PDF下载
APP内阅读
摘要

目的探讨聚乙二醇水凝胶膜(PHFs)是否能作为角膜上皮细胞(CECs)体外扩增的载体以及其能否用于角膜缘干细胞缺乏症(LSCD)的治疗。

方法利用癸二酰氯、聚氧乙基甘油醚、聚已酸内酯二醇人工合成PHFs,检测其厚度、透光度和机械拉伸性能。取清洁级新西兰大白兔4只,培养原代角膜缘上皮细胞,荧光显微镜下观察培养细胞中角蛋白标志物AE1/AE3和干细胞标志物p63的表达;将细胞分为阴性对照组、阳性对照组和PHFs+CECs组,其中将阴性对照组细胞直接种植在培养皿底,加入普通细胞培养液,将阳性对照组细胞种植在培养皿后加入含有100 μmol/L H 2O 2的普通细胞培养液,将PHF+CECs组细胞种植在铺有PHFs的培养皿中用普通细胞培养液培养,各组培养24 h。采用MTT和TUNEL染色法分别观察3个组细胞增生和细胞凋亡情况。采用随机数字表法将清洁级新西兰大白兔15只分为对照组、PHFs组和PHFs+CECs组,每组5只。其中对照组造模后不给予任何处置;PHFs组将空PHFs膜置于LSCD实验兔角膜表面;PHFs+CECs组为将CECs传代后种植于PHFs上构建组织工程移植片后将移植片置于LSCD兔模型的角膜表面。采用荧光素染色法检测各组实验兔角膜缺损面积大小并评分;采用苏木精-伊红染色法检测各组实验兔角膜上皮组织学特点。

结果PHFs厚度不超过150 μm,能承受约6 MPa的拉力,在400~700 nm可见光范围内透过率>99%。角膜缘原代培养的大多数细胞AE1/AE3染色和p63染色阳性。MTT实验结果显示,PHFs+CECs组、阴性对照组和阳性对照组 A 490值分别为0.59±0.01、0.65±0.07和0.06±0.04,总体比较差异有统计学意义( F=12.25, P<0.05),其中PHFs+CECs组和阴性对照组 A 490值明显大于阳性对照组,差异有统计学意义(均 P<0.05)。TUNEL检测结果显示,PHFs+CECs组、阴性对照组和阳性对照组TUNEL阳性细胞率总体比较差异有统计学意义( F=13.45, P<0.05),其中PHFs+CECs组和阴性对照组TUNEL阳性细胞率明显低于阳性对照组,差异均有统计学意义(均 P<0.05)。荧光素染色结果显示,随着术后时间的延长,各组角膜荧光素钠染色评分均降低,对照组、PHFs组和PHFs+CECs组角膜荧光素钠染色评分依次降低。苏木精-伊红染色结果显示,对照组存在较少形状不规则的角膜上皮细胞,PHFs组一些区域出现单层稀疏的角膜上皮细胞;PHFs+CECs组角膜上皮覆盖范围最大,细胞层数增加到3~5层,形态较规则,排列较紧密。

结论PHFs韧性强、透光度高且能够体外扩增角膜上皮,适合做角膜上皮移植片,并能促进LSCD兔模型角膜上皮的修复。

角膜上皮细胞;角膜缘干细胞缺乏症;聚乙二醇水凝胶膜;角膜上皮细胞再生;角膜上皮移植片
ABSTRACT

ObjectiveTo investigate whether polyethylene glycol hydrogel films (PHFs) can be used as a carrier for the expansion of corneal epithelial cells (CECs) in vitro and whether PHFs can be used in the treatment of limbal stem cell deficiency (LSCD).

MethodsSebacoyl chloride, dihydroxyl PCL and glycerol ethoxylate were used to synthesize PHFs.The thickness, transmittance and mechanical tensile properties of PHFs were measured.Four clean-grade New Zealand white rabbits were selected to culture primary limbal epithelial cells.The expression of keratin marker AE1/AE3 and stem cell marker p63 in the cultured cells were observed under a fluorescence microscope.The cells were divided into negative control group cultured with common cell culture solution, positive control group cultured with cell culture solution containing 100 μmol/L H 2O 2, and PHFs+ CECs group lined with PHFs cultured with common cell culture solution for 24 hours.The proliferation and apoptosis of cells in the three groups were observed by MTT and TUNEL staining, respectively.Fifteen clean-grade New Zealand white rabbits were divided into control group, PHFs group and PHFs+ CECs group by random number table method, with 5 rabbits in each group.LSCD model was constructed in the three groups.The control group was not given any treatment after modeling.In PHFs group, empty PHFs were placed on the corneal surface of rabbits.In PHFs+ CECs group, tissue-engineered grafts constructed with CECs after passage implanted on PHFs were placed on the corneal surface of rabbits.The corneal defect area of rabbits was detected and scored by fluorescein sodium staining.The histological characteristics of rabbits corneal epithelium was observed by hematoxylin-eosin staining.The use and care of animals complied with Guide for the Care and Use of Laboratory Animals by the U. S.National Research Council.The experimental protocol was approved by the Research and Clinical Trial Ethics Committee of The First Affiliated Hospital of Harbin Medical University (No.2021006).

ResultsThe synthetic PHFs were with a thickness ≤150 μm, a tensile strength about 6 MPa, and a transmittance over than 99% in the range of 400-700 nm.Most of the cells from primary culture of limbal tissue were positive for AE1/AE3 and p63.MTT test results showed that the A 490 value of PHFs+ CECs group, negative control group and positive control group was 0.59±0.01, 0.65±0.07 and 0.06±0.04, respectively, showing a statistically significant overall difference ( F=12.25, P<0.05). The A 490 values of PHFs+ CECs group and negative control group were significantly higher than that of positive control group, and the differences were statistically significant (both at P<0.05). TUNEL test results showed that there was a significant difference in the TUNEL-positive cell rate among the three groups ( F=13.45, P<0.05), and the rates of TUNEL-positive cells in PHFs+ CECs group and negative control group were significantly lower than that in positive control group (both at P<0.05). Fluorescein sodium staining results showed that with the extension of postoperative period, the corneal fluorescein sodium staining score of the three groups decreased, which decreased successively in control group, PHFs group and PHFs+ CECs group.Hematoxylin-eosin staining showed fewer irregularly shaped corneal epithelial cells in the control group, and sparse single layer of corneal epithelial cells in some areas of the PHFs group.In PHFs+ CECs group, the corneal epithelium coverage was the largest, and the cell layers increased to 3-5, and the cells were with regular morphology and in close arrangement.

ConclusionsPHFs have enough toughness, high transmittance and can expand corneal epithelium in vitro.PHFs are suitable for corneal epithelial transplantation and can promote the repair of corneal epithelium in rabbit model of LSCD.

Epithelial cells, corneal;Limbal stem cell deficiency;Polyethylene glycol hydrogel film;Corneal epithelial cell regeneration;Corneal epithelial grafts
Zhang Hong, Email: nc.defudabe.umbrhgnohgnahz
引用本文

郭译远,贤惠敏,Shereen Tan,等. 以聚乙二醇水凝胶膜为载体构建的角膜上皮移植片对LSCD治疗的可行性[J]. 中华实验眼科杂志,2022,40(12):1125-1133.

DOI:10.3760/cma.j.cn115989-20201125-00794

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
角膜缘干细胞移植是治疗角膜缘干细胞缺乏症(limbal stem cell deficiency,LSCD)的有效办法,但是由于自体移植取材受限和异体移植排斥反应等问题,移植手术受到较大限制。角膜缘干细胞(limbal stem cells,LSCs)可分化成角膜上皮细胞(corneal epithelial cells,CECs),但手术、外伤、感染等因素损伤LSCs后可引起LSCD,导致角膜完整性和透明性的丧失,最终出现角膜结膜化、血管化等眼表慢性炎症改变 [ 1 , 2 ]。目前,LSCs移植手术被认为是恢复LSCs储备、重建眼表结构和治疗LSCD的有效办法。其中,自体角膜缘干细胞移植不存在免疫排斥,移植成功率高,但是仅适合单眼小范围损伤的患者,而且也有因手术操作导致健侧眼出现不可逆损害者。异体角膜缘干细胞移植治疗适合双眼大范围损伤的患者,但存在供体角膜源不足、免疫排斥反应等问题 [ 3 ]。近年来,随着组织工程学的发展,利用组织工程的方法体外扩增CECs、构建上皮移植片为治疗LSCD提供了新的途径,可以有效解决自体和异体角膜缘干细胞移植的相关问题,为治疗LSCD提供了新途径。载体的正确选择对组织工程的成功具有决定意义,目前常用的CECs载体包括羊膜、丝素蛋白膜、胶原水凝胶、壳聚糖水凝胶等 [ 4 , 5 ],这些载体均有透光度较差、供体间差异大、不稳定、机械强度差等缺点 [ 6 , 7 ],因此寻找一种合适的CECs组织工程载体势在必行。研究团队前期的实验已经证明,聚乙二醇水凝胶膜(polyethylene glycol hydrogel films,PHFs)作为一种新型扩增载体,具有透光度高、韧性强、免疫排斥反应小、制作成本低、可批量生产等优点 [ 8 ],推测其可作为载体实现CECs的体外扩增,进而构建工程化角膜上皮,但目前鲜见相关研究报道。本研究拟以PHFs为载体在体外构建工程化角膜上皮移植片并进行LSCD治疗的在体研究,评估该工程化角膜上皮移植片重建眼表结构的可行性,为临床上治疗LSCD提供实验依据。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Yin J , Jurkunas U Limbal stem cell transplantation and complications[J]Semin Ophthalmol 201833(1)∶134-141. DOI: 10.1080/08820538.2017.1353834 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Dong Y , Peng H , Lavker RM . Emerging therapeutic strategies for limbal stem cell defici ency [J/OL]J Ophthalmol 201820187894647[2021-10-09]https://pubmed.ncbi.nlm.nih.gov/30050691/. DOI: 10.1155/2018/7894647 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Guo ZH , Zhang W , Jia Y et al. An insight into the difficulties in the discovery of specific biomarkers of limbal stem cells[J/OL]Int J Mol Sci 201819(7)∶1982[2021-11-01]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6073450/. DOI: 10.3390/ijms19071982 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Zhang L , Zou D , Li S et al. An ultra-thin amniotic membrane as carrier in corneal epithelium tissue-engineering[J/OL]Sci Rep 2016621021[2021-11-01]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4753477/. DOI: 10.1038/srep21021 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Li Y , Yang Y , Yang L et al. Poly(ethylene glycol)-modified silk fibroin membrane as a carrier for limbal epithelial stem cell transplantation in a rabbit LSCD model[J/OL]Stem Cell Res Ther 20178(1)∶256[2022-01-10]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5678789/. DOI: 10.1186/s13287-017-0707-y .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Di Loreto FP , Mangione A , Palmisano E et al. Dried human amniotic membrane as an antiadherent layer for intraperitoneal placi ng of polypropylene mesh in rats [J]Surg Endosc 201327(4)∶1435-1440. DOI: 10.1007/s00464-012-2604-x .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Chen J , Yan C , Zhu M et al. Electrospun nanofibrous SF/P(LLA-CL) membrane:a potential substratum for endothelial keratoplasty[J]Int J Nanomedicine 2015103337-3350. DOI: 10.2147/IJN.S77706 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Ozcelik B , Brown KD , Blencowe A et al. Biodegradable and biocompatible poly(ethylene glycol)-based hydrogel films for the regeneration of corneal endothelium[J]Adv Healthc Mater 20143(9)∶1496-1507. DOI: 10.1002/adhm.201400045 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Xu B , Fan TJ , Zhao J et al. Transplantation of tissue-engineered human corneal epithelium in limbal stem cell deficiency rabbit models[J]Int J Ophthalmol 20125(4)∶424-429. DOI: 10.3980/j.issn.2222-3959.2012.04.04 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Kim DW , Lee SH , Ku SK et al. Transduced PEP-1-FK506BP ameliorates corneal injury in botulinum toxin A-induced dry eye mouse model[J]BMB Rep 201346(2)∶124-129. DOI: 10.5483/bmbrep.2013.46.2.272 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Feng Y , Borrelli M , Reichl S et al. Review of alternative carrier materials for ocular surface reconstruction[J]Curr Eye Res 201439(6)∶541-552. DOI: 10.3109/02713683.2013.853803 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
张灿伟吴欣怡体外构建组织工程角膜的研究进展[J]中华实验眼科杂志 201735(2)∶170-174. DOI: 10.3760/cma.j.issn.2095-0160.2017.02.016 .
返回引文位置Google Scholar
百度学术
万方数据
Zhang CW , Wu XY . Advances in the construction of tissue-engineered cornea in vitro [J]Chin J Exp Ophthalmol 201735(2)∶170-174. DOI: 10.3760/cma.j.issn.2095-0160.2017.02.016 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[13]
Wang W , Narain R , Zeng H Rational design of self-healing tough hydrogels:a mini review[J/OL]Front Chem 20186497[2022-01-10]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6232908/. DOI: 10.3389/fchem.2018.00497 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Kang-Mieler JJ , Mieler WF . Thermo-responsive hydrogels for ocular drug delivery[J]Dev Ophthalmol 201655104-111. DOI: 10.1159/000434694 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Al-Abboodi A , Fu J , Doran PM et al. Three-dimensional nanocharacterization of porous hydrogel with ion and electron beams[J]Biotechnol Bioeng 2013110(1)∶318-326. DOI: 10.1002/bit.24612 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Hussain Z , Thu HE , Shuid AN et al. Recent advances in polymer-based wound dressings for the treatment of diabetic foot ulcer:an overview of state-of-the-art[J]Curr Drug Targets 201819(5)∶527-550. DOI: 10.2174/1389450118666170704132523 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Amer LD , Saleh LS , Walker C et al. Inflammation via myeloid differentiation primary response gene 88 signaling mediates the fibrotic response to implantable synthetic poly(ethylene glycol) hydrogels[J]Acta Biomater 2019100105-117. DOI: 10.1016/j.actbio.2019.09.043 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Kumar D , Lyness A , Gerges I et al. Stem cell delivery with polymer hydrogel for treatment of intervertebral disc degeneration:from 3D culture to design of the delivery device for minimally invasive therapy[J]Cell Transplant 201625(12)∶2213-2220. DOI: 10.3727/096368916X692618 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Janoušková O , Přádný M , Vetrík M et al. Biomimetic modification of dual porosity poly(2-hydroxyethyl methacrylate) hydrogel scaffolds-porosity and stem cell growth evaluation[J/OL]Biomed Mater 201914(5)∶055004[2022-02-12]https://pubmed.ncbi.nlm.nih.gov/31181551/. DOI: 10.1088/1748-605X/ab2856 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Nuvoli D , Alzari V , Nuvoli L et al. Synthesis and characterization of poly(2-hydroxyethylacrylate)/β-cyclodextrin hydrogels obtained by frontal polymerization[J]Carbohydr Polym 2016150166-171. DOI: 10.1016/j.carbpol.2016.05.017 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Qayyum AS , Jain E , Kolar G et al. Design of electrohydrodynamic sprayed polyethylene glycol hydrogel microspheres for cell encapsulation[J/OL]Biofabrication 20179(2)∶025019[2022-01-12]https://pubmed.ncbi.nlm.nih.gov/28516893/. DOI: 10.1088/1758-5090/aa703c .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Kandile NG , Mohamed HM . Chitosan nanoparticle hydrogel based sebacoyl moiety with remarkable capability for metal ion removal from aqueous systems[J]Int J Biol Macromol 2019122578-586. DOI: 10.1016/j.ijbiomac.2018.10.198 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Gong HY , Park J , Kim W et al. A novel conductive and micropatterned PEG-based hydrogel enabling the topographical and electrical stimulatio n of myoblasts [J/OL]ACS Appl Mater Interfaces 201911(51)∶47695-47706[2022-01-12]https://pubmed.ncbi.nlm.nih.gov/31794187/. DOI: 10.1021/acsami.9b16005 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Coutinho AB , Dd F , Souza Filho JP et al. Cytokeratin expression in corneal dystrophies[J]Arq Bras Oftalmol 201174(2)∶118-122. DOI: 10.1590/s0004-27492011000200010 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Xu W , Liu K , Li T et al. An in situ hydrogel based on carboxymethyl chitosan and sodium alginate dialdehyde for corneal wound healing after alkali burn[J]J Biomed Mater Res A 2019107(4)∶742-754. DOI: 10.1002/jbm.a.36589 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
张弘,Email: nc.defudabe.umbrhgnohgnahz
B

郭译远:参与设计实验、实施研究、采集整理数据、分析解释数据、论文撰写;贤惠敏、Shereen Tan、Qiang Fu:参与实施研究、采集数据、分析解释数据、论文撰写;金鑫:参与设计实验、数据整理;Mark Daniel、Greg.G.Qiao:参与分析解释数据、对文章的知识性内容作批评性审阅;张弘:参与设计实验、分析解释数据、对文章的知识性内容作批评性审阅

C
本研究所有作者均声明与任何组织或实体无任何相关的利益冲突
D
国家自然科学基金项目 (U20A20363、81970776)
黑龙江省自然科学基金项目 (LH2020H039)
黑龙江省科技创新基地奖励项目 (JD22C006)
黑龙江省博士后面上资助项目 (LBH-Z22206)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号