临床研究
ENGLISH ABSTRACT
人体测量指标对代谢综合征心血管风险的预测价值
卢绮韵
李安香
陈本坚
梁庆顺
范冠杰
陶一鸣
张荣华
戴芳芳
胡晓灵
刘昀玮
何英骁
朱樱
刘振杰
作者及单位信息
·
DOI: 10.3760/cma.j.cn311282-20220901-00512
Predictive value of anthropometric indicators for cardiovascular risk in metabolic syndrome
Lu Qiyun
Li Anxiang
Chen Benjian
Liang Qingshun
Fan Guanjie
Tao Yiming
Zhang Ronghua
Dai Fangfang
Hu Xiaoling
Liu Yunwei
He Yingxiao
Zhu Ying
Liu Zhenjie
Authors Info & Affiliations
Lu Qiyun
Department of Endocrindogy, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
Li Anxiang
Department of Endocrindogy, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
Chen Benjian
Department of Endocrindogy, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
Liang Qingshun
Department of Endocrindogy, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
Fan Guanjie
Department of Endocrindogy, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
Tao Yiming
Department of Endocrindogy, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
Zhang Ronghua
Department of TCM, Pharmacy College of Jinan University, Guangzhou 510632, China
Dai Fangfang
Department of Endocrindogy, Jiangsu Province Hospital of TCM, Nanjing 210000, China
Hu Xiaoling
Department of Geriatrics, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
Liu Yunwei
The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
He Yingxiao
The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
Zhu Ying
Department of Endocrindogy, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
Liu Zhenjie
Department of Endocrindogy, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
·
DOI: 10.3760/cma.j.cn311282-20220901-00512
0
0
0
0
0
0
PDF下载
APP内阅读
摘要

目的评价各种人体测量指标在代谢综合征(MS)人群中心血管风险的预测价值。

方法采用横断面研究方法对MS受试者的人体测量指标与心血管风险进行相关统计学分析,通过心血管代谢风险指数(cardiometabolic risk index,CMRI)评估心血管代谢风险,使用受试者工作特征(ROC)曲线分析评估人体测量指标对心血管代谢风险的预测能力。

结果(1)各人体测量指标[体重指数(BMI)、腰臀比、腰围身高比(WtHR)、体脂率、内脏脂肪指数(visceral fat index, VFI)、锥度指数(conicity index, CI)、体形指数(a body shape index, ABSI)、身体圆度指数(body roundness index, BRI)、腹部体积指数(abdominal volume index,AVI)]MS组明显高于非MS( P<0.05),同时2组的CMRI评分及高心血管风险差异均具有统计学意义( P<0.05)。(2) Logistic回归分析表明,无论在总体人群还是在非MS人群或MS人群中,校正混杂因素后,心血管风险随着BMI、VFI、腰臀比、WtHR、CI、BRI、AVI升高而增加( P<0.05)。(3)经ROC曲线分析,BMI、VFI、AVI在总体研究人群AUC值分别为0.767、0.734、0.770,在非MS人群分别为0.844、0.816、0.795,在MS人群分别为0.701、0.666、0.702。对于总体人群、非MS人群,BMI诊断心血管高风险的最佳截断点分别为26.04 kg/m 2、24.36 kg/m 2,VFI的最佳截断点分别为10.25、9.75,AVI的最佳截断点分别为17.3 cm 2、15.53 cm 2。在MS人群BMI诊断青中年男性心血管高风险的最佳截断点为27.63 kg/m 2,AVI诊断MS女性心血管高风险的最佳截断点为18.08 cm 2

结论BMI、VFI、AVI可用于普通人群早期心血管风险监测,BMI可作为MS青中年男性心血管高风险的预测指标,而AVI可作为女性心血管高风险的预测指标。

人体测量指标;诊断预测;代谢综合征;心血管风险
ABSTRACT

ObjectiveTo evaluate the predictive value of anthropometric indicators in predicting cardiovascular risk in the population with metabolic syndrome(MS).

MethodsA cross-sectional study was used to analyze the correlation between anthropometric measures and cardiovascular risk in subjects with MS. Cardiometabolic risk was assessed with cardiometabolic risk index(CMRI). Receiver operating characteristic(ROC) curve analysis was used to assess the predictive power of anthropometric measures for cardiometabolic risk.

Results(1) The anthropometric measures [body mass index(BMI), waist-hip ratio(WHR), waist-to-height ratio(WtHR), body fat percentage(BFP), visceral fat index(VFI), conicity index(CI), a body shape index(ABSI), body roundness index(BRI), abdominal volume index(AVI)] in the MS group were significantly higher than those in the non-MS group( P<0.05). Moreover, there were significant differences in CMRI score and vascular risk between the two groups( P<0.05). (2) Logistic regression analysis showed that the cardiovascular risk was increased with the increases of BMI, VFI, WHR, WtHR, CI, BRI, and AVI after adjusting for confounding factors in the overall population, the non-MS population, and the MS population( P<0.05). (3) In the ROC analysis, the AUC values of BMI, VFI, and AVI were 0.767, 0.734, and 0.770 in the overall population; 0.844, 0.816, and 0.795 in the non-MS population; 0.701, 0.666, and 0.702 in the MS population, respectively. For the overall population and non-MS population, the optimal cut points of BMI to diagnose high cardiovascular risk were 26.04 kg/m 2 and 24.36 kg/m 2; the optimal cut points of VFI were 10.25 and 9.75; the optimal cut points of AVI were 17.3 cm 2 and 15.53 cm 2, respectively. In the MS population, the optimal cut point as a predictor of high cardiovascular risk in young and middle-aged men with MS was 27.63 kg/m 2, and the optimal cut point of AVI in women was 18.08 cm 2.

ConclusionBMI, VFI, and AVI can be used as predictors of cardiovascular risk in the general population. BMI can be used as a predicator of high cardiovascular risk in young and middle-age men with MS. AVI can be used as a predicator of high cardiovascular risk in women with MS.

Anthropometric measures;Diagnostic prediction;Metabolic syndrome;Cardiovascular risk
Liu Zhenjie, Email: mocdef.9ab31ljnehz
引用本文

卢绮韵,李安香,陈本坚,等. 人体测量指标对代谢综合征心血管风险的预测价值[J]. 中华内分泌代谢杂志,2023,39(01):26-33.

DOI:10.3760/cma.j.cn311282-20220901-00512

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
心血管疾病(cardiovascular diseases, CVD)被认为是全球主要的死亡原因。过度肥胖,尤其是内脏肥胖,是最重要的心血管危险因素之一。代谢综合征(metabolic syndrome,MS)是一组以中心性肥胖、血压升高、糖脂代谢紊乱为表现的综合症候群,以肥胖为表型,以胰岛素抵抗为病理基础,具有明确的高心血管事件风险 [ 1 ]。由于MS的发病率不断攀升,MS的防控形势日益严峻,因而在MS人群中进行CVD风险预测,具有重大的临床意义。
目前心血管代谢风险的评估有很多,其中,心血管代谢风险指数(cardiometabolic risk index,CMRI)是国际糖尿病联盟流行病学组和预防工作组联合声明的一种敏感且准确的心脏代谢疾病风险的标志物 [ 2 ],其评分涉及腰围、收缩压、舒张压、三酯甘油(TG)、高密度脂蛋白胆固醇(HDL-C)、空腹血糖(FPG),被广泛应用于临床研究 [ 3 , 4 ]
人体测量指标是反映人体形态、脂肪分布的重要指标,具有方便获取、简单廉价的优势,好的人体测量指标可广泛应用于健康体检、临床风险评估、流行病学调查等。传统人体测量指标——体重指数(BMI)是当前评价肥胖使用最广泛的指标。但BMI只能反映身体的总重量,不能反映身体脂肪的分布及脂肪所占身体成分比例,所以单纯应用BMI来诊断肥胖特异度较高,灵敏度不足,也容易漏掉相当一部分BMI正常但身体脂肪超过正常范围的人。腰臀比、腰围身高比(waist-to-height ratio,WtHR)则能较好反映内脏脂肪分布情况。WtHR是评价中心性肥胖的理想指标,可作为预测单纯肥胖人群MS发病风险的指标。由于消除了身高对肥胖程度的影响,故使用WtHR评价中心性肥胖的效果要优于用腰围的评价效果。近些年不断开发出新的体测指数,如体脂率(body fat percentage)、内脏脂肪指数(visceral fat index,VFI)、锥度指数(conicity index,CI)、体形指数(a body shape index,ABSI)、身体圆度指数(body roundness index,BRI)、腹部体积指数(abdominal volume index,AVI)等。其不仅考虑体重,同时加入腰围、身高、脂肪分布等因素,这些人体测量指标均可用于评估肥胖,但是能否作为MS心血管风险的预测指标及其最佳截断点目前研究报道较少。
本研究通过横断面研究方法,综合评价人体测量指标在预测MS人群心血管风险的能力,旨在寻找灵敏、可靠、简廉的指标,用于临床、基层或流行病中评价MS心血管风险,为临床防治提供参考。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Wu Z , Cui H , Zhang Y ,et al. The impact of the metabolic score for insulin resistance on cardiovascular disease: a 10-year follow-up cohort study[J]. J Endocrinol Invest, 2022,10:1007. DOI: 10.1007/s40618-022-01925-0 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Correa-Rodríguez M , Ramírez-Vélez R , Correa-Bautista JE ,et al. Association of muscular fitness and body fatness with cardiometabolic risk factors: the FUPRECOL study[J]. Nutrients, 2018,10(11):1742. DOI: 10.3390/nu10111742 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Ramírez-Vélez R , Peña-Ibagon JC , Martínez-Torres J ,et al. Handgrip strength cutoff for cardiometabolic risk index among Colombian children and adolescents: The FUPRECOL Study[J]. Sci Rep, 2017,7:42622. DOI: 10.1038/srep42622 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Andersen LB , Harro M , Sardinha LB ,et al. Physical activity and clustered cardiovascular risk in children: a cross-sectional study(The European Youth Heart Study)[J]. Lancet, 2006,368(9532):299-304. DOI: 10.1016/S0140-6736(06)69075-2 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Valdez R . A simple model-based index of abdominal adiposity[J]. J Clin Epidemiol, 1991,44(9):955-956. DOI: 10.1016/0895-4356(91)90059-i .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Krakauer NY , Krakauer JC . A new body shape index predicts mortality hazard independently of body mass index[J]. PLoS One, 2012,7(7):e39504. DOI: 10.1371/journal.pone.0039504 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Thomas DM , Bredlau C , Bosy-Westphal A ,et al. Relationships between body roundness with body fat and visceral adipose tissue emerging from a new geometrical model[J]. Obesity(Silver Spring), 2013,21(11):2264-2271. DOI: 10.1002/oby.20408 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Guerrero-Romero F , Rodríguez-Morán M . Abdominal volume index. An anthropometry-based index for estimation of obesity is strongly related to impaired glucose tolerance and type 2 diabetes mellitus[J]. Arch Med Res, 2003,34(5):428-432. DOI: 10.1016/S0188-4409(03)00073-0 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Yao F , Bo Y , Zhao L ,et al. Prevalence and influencing factors of metabolic syndrome among adults in China from 2015 to 2017[J]. Nutrients, 2021,13(12):4475. DOI: 10.3390/nu13124475 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Guembe MJ , Fernandez-Lazaro CI , Sayon-Orea C ,et al. Risk for cardiovascular disease associated with metabolic syndrome and its components: a 13-year prospective study in the RIVANA cohort[J]. Cardiovasc Diabetol, 2020,19(1):195. DOI: 10.1186/s12933-020-01166-6 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Powell-Wiley TM , Poirier P , Burke LE ,et al. Obesity and cardiovascular disease: a scientific statement from the American Heart Association[J]. Circulation, 2021,143(21):e984-e1010. DOI: 10.1161/CIR.0000000000000973 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Li M , Chi X , Wang Y ,et al. Trends in insulin resistance: insights into mechanisms and therapeutic strategy[J]. Signal Transduct Target Ther, 2022,7(1):216. DOI: 10.1038/s41392-022-01073-0 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Calle EE , Thun MJ , Petrelli JM ,et al. Body-mass index and mortality in a prospective cohort of U.S. adults[J]. N Engl J Med, 1999,341(15):1097-1105. DOI: 10.1056/NEJM199910073411501 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Bosello O , Donataccio MP , Cuzzolaro M . Obesity or obesities? Controversies on the association between body mass index and premature mortality[J]. Eat Weight Disord, 2016,21(2):165-174. DOI: 10.1007/s40519-016-0278-4 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Elagizi A , Kachur S , Lavie CJ ,et al. An overview and update on obesity and the obesity paradox in cardiovascular diseases[J]. Prog Cardiovasc Dis, 2018,61(2):142-150. DOI: 10.1016/j.pcad.2018.07.003 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Ramírez-Vélez R , Pérez-Sousa , Izquierdo M ,et al. Validation of surrogate anthropometric indices in older adults: what is the best indicator of high cardiometabolic risk factor clustering?[J]. Nutrients, 2019,11(8) :1701. DOI: 10.3390/nu11081701 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Barbi J , Patnaik SK , Pabla S ,et al. Visceral obesity promotes lung cancer progression-toward resolution of the obesity paradox in lung cancer[J]. J Thorac Oncol, 2021,16(8):1333-1348. DOI: 10.1016/j.jtho.2021.04.020 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Rana MN , Neeland IJ . Adipose tissue inflammation and cardiovascular disease: an update[J]. Curr Diab Rep, 2022,22(1):27-37. DOI: 10.1007/s11892-021-01446-9 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Neeland IJ , Ross R , Després JP ,et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement[J]. Lancet Diabetes Endocrinol, 2019,7(9):715-725. DOI: 10.1016/S2213-8587(19)30084-1 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Shah RV , Murthy VL , Abbasi SA ,et al. Visceral adiposity and the risk of metabolic syndrome across body mass index: the MESA study[J]. JACC Cardiovasc Imaging, 2014,7(12):1221-1235. DOI: 10.1016/j.jcmg.2014.07.017 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Perona JS , Schmidt RJ , Ramírez-Vélez R ,et al. Waist circumference and abdominal volume index are the strongest anthropometric discriminators of metabolic syndrome in Spanish adolescents[J]. Eur J Clin Invest, 2019,49(3):e13060. DOI: 10.1111/eci.13060 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
刘振杰,Email: mocdef.9ab31ljnehz
B
所有作者均声明不存在利益冲突
C
国家重点研发计划 (2018YFC2002500)
广州市民政局科技计划项目 (2020MZK24)
广东省中医院中医药科学技术研究专项 (YN2020QN12)
广东省中医院朝阳人才项目 (ZY2022YL20)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号