临床研究
ENGLISH ABSTRACT
学龄儿童周边眼轴长度及视网膜曲率与屈光状态的关联性
何曦
华梓煜
李仕明
闫昕
蒋嫣
蔡志宁
刘怒飞
康玉婷
马爽
黄凌鋆
李涵悦
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20220228-00078
Association of peripheral axial length, retinal curvature with refraction in school-aged children
He Xi
Hua Ziyu
Li Shiming
Yan Xin
Jiang Yan
Cai Zhining
Liu Nufei
Kang Yuting
Ma Shuang
Huang Lingyun
Li Hanyue
Authors Info & Affiliations
He Xi
Beijing Tongren Hospital, Tongren Eye Center, Capital Medical University, Beijing Ophthalmology & Visual Science Key Lab, Beijing 100730, China
Hua Ziyu
Beijing Tongren Hospital, Tongren Eye Center, Capital Medical University, Beijing Ophthalmology & Visual Science Key Lab, Beijing 100730, China
Li Shiming
Beijing Tongren Hospital, Tongren Eye Center, Capital Medical University, Beijing Ophthalmology & Visual Science Key Lab, Beijing 100730, China
Yan Xin
Beijing Tongren Hospital, Tongren Eye Center, Capital Medical University, Beijing Ophthalmology & Visual Science Key Lab, Beijing 100730, China
Jiang Yan
Beijing Tongren Hospital, Tongren Eye Center, Capital Medical University, Beijing Ophthalmology & Visual Science Key Lab, Beijing 100730, China
Cai Zhining
Beijing Tongren Hospital, Tongren Eye Center, Capital Medical University, Beijing Ophthalmology & Visual Science Key Lab, Beijing 100730, China
Liu Nufei
Beijing Tongren Hospital, Tongren Eye Center, Capital Medical University, Beijing Ophthalmology & Visual Science Key Lab, Beijing 100730, China
Kang Yuting
Beijing Tongren Hospital, Tongren Eye Center, Capital Medical University, Beijing Ophthalmology & Visual Science Key Lab, Beijing 100730, China
Ma Shuang
Beijing Tongren Hospital, Tongren Eye Center, Capital Medical University, Beijing Ophthalmology & Visual Science Key Lab, Beijing 100730, China
Huang Lingyun
Beijing Tongren Hospital, Tongren Eye Center, Capital Medical University, Beijing Ophthalmology & Visual Science Key Lab, Beijing 100730, China
Li Hanyue
Beijing Tongren Hospital, Tongren Eye Center, Capital Medical University, Beijing Ophthalmology & Visual Science Key Lab, Beijing 100730, China
·
DOI: 10.3760/cma.j.cn115989-20220228-00078
1038
187
0
1
9
4
PDF下载
APP内阅读
摘要

目的探索学龄儿童周边眼轴长度及视网膜曲率半径与屈光状态之间的关联性。

方法采用横断面研究设计,纳入2021年7—10月于首都医科大学附属北京同仁医院进行眼科检查的6~15岁儿童287人287眼,其中男154人,女133人。采用标准对数视力表测定受检眼裸眼视力及最佳矫正视力;采用复方托吡卡胺滴眼液点眼行睫状肌麻痹,采用电脑验光仪测量等效球镜度(SE)。根据SE不同将受检者分为远视组90眼、正视组82眼和近视组115眼,分别为SE>+0.5 D、SE>-0.5 D~≤+0.5 D和SE≤-0.5 D。采用Lenstar LS900分别测量受检者中央和周边30°颞侧、鼻侧、上方、下方眼轴长度。采用部分相干光测量建模法计算视网膜坐标并转化为视网膜曲率半径。根据水平方向(鼻颞侧)周边眼轴长度差值绝对值(中位数)作为临界值将受检眼分为H1组(眼轴长度差值<0.35 mm)和H2组(眼轴长度差值≥0.35 mm);根据垂直方向(上下方)周边眼轴长度差值绝对值(中位数)分为V1组(眼轴长度差值<0.32 mm)和V2组(眼轴长度差值≥0.32 mm)。依据上述水平和垂直方向分组方法将受检眼分为V1H1、V1H2、V2H1和V2H2组。比较不同组间受检者眼轴长度、SE、近视比例和视网膜曲率半径。

结果受检眼中央眼轴长度为23.53(22.93,24.10)mm。颞侧、鼻侧、上方、下方周边眼轴长度分别为22.75(22.11,23.22)、22.99(22.32,23.45)、23.24(22.58,23.75)和23.12(22.52,23.56)mm,其中颞侧眼轴长度低于鼻侧,差异有统计学意义( Z=-3.58, P<0.01)。H1组中央、鼻侧、上方及下方眼轴长度均较H2组短,V1组中央、鼻侧、上方眼轴长度均较V2组短,差异均有统计学意义(均 P<0.05)。H1组SE为+0.06(-1.06,+0.75)D,明显大于H2组的-0.32(-1.64,+0.56)D,差异有统计学意义( Z=-2.10, P=0.04)。V1组SE为+0.13(-0.81,+0.80)D,明显大于V2组的-0.56(-1.83,+0.48)D,差异有统计学意义( Z=-3.39, P<0.01)。V1组近视比例为33.5%(58/173),低于V2组的50.5%(53/105),差异有统计学意义( χ 2=7.83, P<0.01)。V1H1、V1H2、V2H1和V2H2组SE总体比较差异有统计学意义( H=24.79, P<0.01),其中V1H1组SE显著大于V1H2组、V2H1组和V2H2组,差异均有统计学意义(均 P<0.01)。远视组、正视组、近视组受检眼水平方向和垂直方向视网膜曲率半径总体比较,差异均有统计学意义( H=22.34、19.30,均 P<0.01),其中远视组和正视组水平及垂直方向视网膜曲率半径显著大于近视组,差异均有统计学意义(均 P<0.01)。

结论学龄儿童眼球的周边眼轴长度存在不对称性,不对称程度越高则屈光度越偏向近视。与正视及远视儿童相比,近视儿童的视网膜形态更陡峭。

近视;儿童;眼轴长度;屈光;不对称;视网膜形态
ABSTRACT

ObjectiveTo investigate the association of peripheral axial lengths and retinal curvatures with refractive status.

MethodsA cross-sectional study was conducted out.Two hundred and eighty-seven eyes of 287 consecutive children aged 6-15 years old who recieved eye examinations at Beijing Tongren Hospital from July to October 2021 were enrolled, including 154 males and 133 females.Uncorrected and best corrected visual acuity were tested with a standard logarithmic visual acuity chart.Spherical equivalent (SE) was measured via an auto refractometer after cycloplegia with tropicamide.The hyperopic, emmetropic and myopic groups were defined with a SE >+ 0.5 D, SE >-0.5 D to ≤+ 0.5 D and SE≤-0.5 D, respectively.Central and 30° peripheral eye lengths (nasal, temporal, superior, inferior) were obtained using the Lenstar LS900.Retinal coordinates were derived from partial coherence interferometry modeling and converted to retinal curvatures.According to the median horizontal peripheral eye length differences (absolute difference between nasal and temporal), participants were assigned to H1 group (absolute difference <0.35 mm) or H2 group (absolute difference ≥0.35 mm). According to the median vertical peripheral eye length differences (absolute difference between superior and inferior), participants were assigned to V1 group (absolute difference <0.32 mm) or V2 group (absolute difference ≥0.32 mm). Four groups of V1H1, V1H2, V2H1 and V2H2 were constructed according to the grouping methods in both directions above.This study adhered to the Declaration of Helsinki.The study protocol was approved by the Ethics Committee of Beijing Tongren Hospital, Capital Medical University (No.TRECKY2021-162). Written informed consent was obtained from guardians of each subject prior to any medical examination.

ResultsThe central axial length was 23.53(22.93, 24.10)mm.Peripheral eye lengths of temporal, nasal, superior and inferior were 22.75(22.11, 23.22)mm, 22.99(22.32, 23.45)mm, 23.24(22.58, 23.75)mm and 23.12(22.52, 23.56)mm, respectively.Temporal eye length was shorter than nasal, showing a statistically significant difference ( Z=-3.58, P<0.01). Compared with H2 group, H1 group had shorter central, nasal, superior and inferior eye lengths, showing statistically significant differences (all at P<0.05). Compared with V2 group, V1 group had shorter central, nasal and superior eye lengths, showing statistically significant differences (all at P<0.05). SE of H1 group was + 0.06 (-1.06, + 0.75) D, which was significantly greater than -0.32 (-1.64, + 0.56) D of H2 group ( Z=-2.10, P=0.04). SE of V1 group was + 0.13 (-0.81, + 0.80) D, which was significantly greater than -0.56 (-1.83, + 0.48) D of H2 group ( Z=-3.39, P<0.01). The myopia ratio of V1 group was 33.5% (58/173), which was significantly lower than 50.5% (53/105) of V2 group ( χ 2=7.83, P<0.01). There was a significant overall difference in SE among VIH1, V1H2, V2H1 and V2H2 groups ( H=24.79, P<0.01). SE was greater in V1H1 group than V1H2, V2H1 and V2H2 groups (all at P<0.01). There was a significant difference in both horizontal and vertical retinal curvatures among different refractive groups ( H=22.34, 19.30; both at P<0.01). The retical curvature in both directions of hyperopic and emmetropic groups were significantly larger than those of myopic group (both at P<0.01).

ConclusionsPeripheral eye lengths are asymmetric in school-aged children.Higher asymmetry is associated with myopic shifts.Myopic children have a steeper retina than the hyperopic and emmetropic children.

Myopia;Child;Axial length, eye;Refraction, ocular;Asymmetry;Retinal curvature
Li Shiming, Email: mocdef.3ab6118gnimihsil
引用本文

何曦,华梓煜,李仕明,等. 学龄儿童周边眼轴长度及视网膜曲率与屈光状态的关联性[J]. 中华实验眼科杂志,2023,41(02):140-145.

DOI:10.3760/cma.j.cn115989-20220228-00078

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
近视已成为全球性公共卫生问题,预计到2050年全球将有近半人口罹患近视,其中约10%为高度近视 [ 1 ]。高度近视会增加眼组织严重并发症的发生风险,导致患者视力障碍或丧失,影响患者生活质量,而儿童期早发近视是高度近视防控的重点。目前近视的发生机制仍未完全阐明,但动物实验研究发现,周边视网膜的成像质量对于眼球的生长发育同样重要 [ 2 ]。近视患者周边屈光度比正视眼和远视眼更易向远视漂移,其可能原因是近视眼的轴向眼轴长度增长速度比赤道部快,导致周边眼轴长度比中央更短,使光线的焦点落在周边视网膜之后 [ 3 ]。近视眼的眼球形态和增长模式与正视眼及远视眼不同,视网膜曲率也随之发生改变,可以通过影像学检查方法进行研究。MRI研究表明,近视患者的眼球在长、宽、高3个维度均增加,但以长轴方向的增长最为明显 [ 3 ]。眼球形态和视网膜曲率改变可能发生在屈光度改变之前,因此构建眼球或视网膜形态学特征模型有助于预测近视的发生和发展。获得视网膜形态特征的方法包括MRI、光相干断层扫描和超声技术等,但存在价格昂贵或检查仪器分辨率较低等问题 [ 4 ]。光学生物学测量仪利用部分相干光测量(partial coherence interferometry,PCI)原理可非接触地精准测量眼轴长度。Verkicharla等 [ 5 ]则采用IOL Master测量周边眼轴长度,并根据Le Grand模型眼计算视网膜坐标(PCI建模法),进而转化为视网膜曲率半径,已证明该模型测得的视网膜曲率半径与MRI测得的数据具有较好的一致性。目前鲜见关于儿童视网膜形态与屈光状态之间的关联研究,而相关研究对目前儿童近视的防控具有重要意义。本研究拟采用PCI建模法获得学龄儿童视网膜曲率半径,进而探讨视网膜形态与屈光状态之间的关联。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Bruce A Re:Holden et al.:global prevalence of myopia and high myopia and temporal trends from 2000 through 2050 (Ophthalmology 2016;123∶1036-1042)[J/OL]Ophthalmology 2017124(3)∶e24e25[2022-06-10]https://pubmed.ncbi.nlm.nih.gov/28219507/. DOI: 10.1016/j.ophtha.2016.06.066 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Flitcroft DI . The complex interactions of retinal,optical and environmental factors in myopia aetiology[J]Prog Retin Eye Res 201231(6)∶622660. DOI: 10.1016/j.preteyeres.2012.06.004 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Atchison DA Jones CE Schmid KL et al. Eye shape in emmetropia and myopia[J]Invest Ophthalmol Vis Sci 200445(10)∶33803386. DOI: 10.1167/iovs.04-0292 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Koumbo Mekountchou IO Conrad F Sankaridurg P et al. Peripheral eye length measurement techniques:a review[J]Clin Exp Optom 2020103(2)∶138147. DOI: 10.1111/cxo.12892 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Verkicharla PK Suheimat M Pope JM et al. Validation of a partial coherence interferometry method for estimating retinal shape[J]Biomed Opt Express 20156(9)∶32353247. DOI: 10.1364/BOE.6.003235 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Verkicharla PK Suheimat M Schmid KL et al. Differences in retinal shape between East Asian and Caucasian eyes[J]Ophthalmic Physiol Opt 201737(3)∶275283. DOI: 10.1111/opo.12359 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Osuagwu UL Suheimat M Atchison DA . Peripheral aberrations in adult hyperopes,emmetropes and myopes[J]Ophthalmic Physiol Opt 201737(2)∶151159. DOI: 10.1111/opo.12354 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Logan NS Gilmartin B Wildsoet CF et al. Posterior retinal contour in adult human anisomyopia[J]Invest Ophthalmol Vis Sci 200445(7)∶21522162. DOI: 10.1167/iovs.03-0875 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Ehsaei A Chisholm CM Pacey IE et al. Off-axis partial coherence interferometry in myopes and emmetropes[J]Ophthalmic Physiol Opt 201333(1)∶2634. DOI: 10.1111/opo.12006 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Verkicharla PK Suheimat M Schmid KL et al. Peripheral refraction,peripheral eye length,and retinal shape in myopia[J]Optom Vis Sci 201693(9)∶10721078. DOI: 10.1097/OPX.0000000000000905 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Lim LS Yang X Gazzard G et al. Variations in eye volume,surface area,and shape with refractive error in young children by magnetic resonance imaging analysis[J]Invest Ophthalmol Vis Sci 201152(12)∶88788883. DOI: 10.1167/iovs.11-7269 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Gilmartin B Nagra M Logan NS . Shape of the posterior vitreous chamber in human emmetropia and myopia[J]Invest Ophthalmol Vis Sci 201354(12)∶72407251. DOI: 10.1167/iovs.13-12920 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Lim LS Matsumura S Htoon HM et al. MRI of posterior eye shape and its associations with myopia and ethnicity[J]Br J Ophthalmol 2020104(9)∶12391245. DOI: 10.1136/bjophthalmol-2019-315020 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Ding X Wang D Huang Q et al. Distribution and heritability of peripheral eye length in Chinese children and adolescents:the Guangzhou Twin Eye Study[J]Invest Ophthalmol Vis Sci 201354(2)∶10481053. DOI: 10.1167/iovs.12-10066 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Atchison DA Rosén R The possible role of peripheral refraction in development of myopia[J]Optom Vis Sci 201693(9)∶10421044. DOI: 10.1097/OPX.0000000000000979 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Faria-Ribeiro M Queirós A Lopes-Ferreira D et al. Peripheral refraction and retinal contour in stable and progressive myopia[J]Optom Vis Sci 201390(1)∶915. DOI: 10.1097/OPX.0b013e318278153c .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Verkicharla PK Mathur A Mallen EA et al. Eye shape and retinal shape,and their relation to peripheral refraction[J]Ophthalmic Physiol Opt 201232(3)∶184199. DOI: 10.1111/j.1475-1313.2012.00906.x .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
李仕明,Email: mocdef.3ab6118gnimihsil
B

何曦、华梓煜:直接参与选题、采集/分析及解释数据、起草文章;李仕明:直接参与选题、起草文章、文章审阅及定稿;闫昕、蒋嫣、蔡志宁:设计试验、实施研究、采集/分析及解释数据;刘怒飞、康玉婷、马爽、黄凌鋆、李涵悦:采集/分析及解释数据

C
所有作者均声明不存在利益冲突
D
国家自然科学基金项目 (82071000)
北京市自然科学基金杰出青年科学基金项目 (JQ20029)
首都卫生发展科研专项项目 (2020-2-1081)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号