论著
ENGLISH ABSTRACT
MassARRAY基因分型技术在新生儿遗传代谢病诊断中的应用
张婷
尚世强
杨建滨
周旭晨
张玉
杨茹莱
黄新文
作者及单位信息
·
DOI: 10.3760/cma.j.cn114452-20220321-00164
Application of MassARRAY genotyping assay in the diagnosis of neonatal genetic metabolic diseases
Zhang Ting
Shang Shiqiang
Yang Jianbin
Zhou Xuchen
Zhang Yu
Yang Rulai
Huang Xinwen
Authors Info & Affiliations
Zhang Ting
Department of Genetics and Metabolism, the Children′s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052
Shang Shiqiang
Lab Center, the Children′s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
Yang Jianbin
Department of Genetics and Metabolism, the Children′s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052
Zhou Xuchen
Department of Neonatology, the First Division Hospital of Xinjiang Production and Construction Corps, Aksu 843000, China
Zhang Yu
Zhejiang Biosan Biochemical Technologies Co., Ltd, Hangzhou 310012, China
Yang Rulai
Department of Genetics and Metabolism, the Children′s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052
Huang Xinwen
Department of Genetics and Metabolism, the Children′s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052
·
DOI: 10.3760/cma.j.cn114452-20220321-00164
394
126
0
0
2
1
PDF下载
APP内阅读
摘要

目的探讨MassARRAY基因分型技术应用于新生儿遗传代谢病诊断的准确性、时效性及可行性。

方法回顾性研究。收集2016年12月至2020年1月在浙江省新生儿筛查中心应用串联质谱筛查的疑似阳性患儿7 922例,采用MassARRAY技术进行27种遗传代谢病的常见变异位点检测,通过Sanger或二代测序验证并进一步寻找潜在变异。

结果共1 408份样本送检MassARRAY,307例确诊为遗传代谢病患儿,其中高苯丙氨酸血症检出率最高,其次为原发性肉碱缺乏症、短链酰基辅酶A脱氢酶缺乏症和甲基丙二酸血症。经Sanger测序验证100%(307/307)符合。287例检测为携带者,49.1%(141/287)经Sanger测序确认为携带者,以SLC22A5MCCC1基因为主。50.8%(146/287)还检测到另一个等位基因变异,以PAHPTSACADS基因为主。814例未发现变异,对其中158例复查后串联质谱特征性指标持续阳性、尿有机酸及其他生化检测等异常的样本进行二代测序,38%(60/158)检测到2个等位基因变异。最终确诊513例遗传代谢病患者,MassARRAY的总检出率为59.8%(307/513)。

结论MassARRAY技术可作为新生儿遗传代谢病的早期分子筛查方法,在高苯丙氨酸血症、原发性肉碱缺乏症等热点变异集中的疾病中检出率较高,后期需不断优化新的疾病基因和变异位点从而进一步提升其潜在应用价值。

新生儿遗传代谢病;串联质谱法;基因分型技术;变异;应用价值
ABSTRACT

ObjectiveTo investigate the accuracy, effectiveness and feasibility of MassARRAY genotyping assay in the diagnoses of neonatal genetic metabolic diseases.

MethodsThis is a retrospective study. From December 2016 to January 2020, newborns were screened by tandem mass spectrometry at the Zhejiang Newborn Screening Center, among which the data of 7 922 suspected positive cases of genetic metabolic diseases were collected. These patients were then tested for the common variants of 27 genetic metabolic diseases by MassARRAY genotyping assay, along with further testing using Sanger or next-generation sequencing used to verify and/or further search for potential variants.

ResultsA total of 1 408 cases were tested with MassARRAY. Among these, 307 cases were confirmed with certain genetic metabolic diseases. The detection rate of hyperphenylalaninemia was the highest, followed by primary carnitine deficiency, short acyl-coA dehydrogenase deficiency and methylmalonic acidemia. With these cases, the consistency of Sanger sequencing and MassARRAY was 100% (307/307). Another 287 cases were identified as carriers by MassARRAY with a 49.1% (141/287) consistency in reference to Sanger sequencing, mainly involving SLC22A5 and MCCC1 genes. Meanwhile, 50.8% (146/287) of these cases were found to have another variant mainly involving PAH, PTS andACADS genes. The remaining 814 cases have no variants; 158 cases out of these patients have continuously abnormal amino acids, acyl carnitines, urine organic acid and/or other biochemical indices, and were tested by next-generation sequencing, among which 38% (60/158) were detected with two variants. In this study, a total of 513 patients with genetic metabolic disease were diagnosed, and the detection rate of MassARRAY was 59.8% (307/513).

ConclusionsMassARRAY genotyping assay can be used as an early molecular screening method for neonatal genetic metabolic diseases. The detection rate is particularly high in diseases with a high concentration of hotspot variants, such as hyperphenylalaninemia and primary carnitine deficiency. The future application value of MassARRAY should be further improved by continuously optimizing its ability to identify new disease genes and potential variable sites.

Neonatal genetic metabolic disease;Tandem mass spectrometry;Genotyping assay;Variants;Application value
Huang Xinwen, Email: nc.defudabe.ujz2205036
引用本文

张婷,尚世强,杨建滨,等. MassARRAY基因分型技术在新生儿遗传代谢病诊断中的应用[J]. 中华检验医学杂志,2023,46(02):155-162.

DOI:10.3760/cma.j.cn114452-20220321-00164

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
遗传代谢病是一种由复杂代谢途径中特定酶缺陷引起的异质性疾病,由于必需代谢物的消耗或毒性代谢物异常积累而导致代谢状态紊乱1。大多数遗传代谢病在新生儿期临床表现不明显,常于儿童早期起病,并呈进行性加重,造成智力及体格发育落后甚至死亡,给家庭和社会造成沉重负担。因此,早期筛查、诊断和治疗对于预防出生缺陷具有重要意义2。串联质谱是目前应用最广泛的新生儿筛查技术之一,可以同时测定生物样品中多种目标代谢物,用于检测氨基酸、有机酸和脂肪酸氧化障碍等30多种遗传代谢病。
串联质谱筛查阳性病例需要结合其他生化检测及基因测序明确诊断3。Sanger测序和二代测序是遗传代谢病的常用分子诊断技术,但存在操作繁琐、检测周期长、成本高、数据分析量大等缺点,影响早期诊断和治疗。MassARRAY技术利用单碱基多重PCR扩增延伸技术和基质辅助激光解吸附电离飞行时间质谱(matrix-assisted laser desorption ionization time of flight mass spectrometry,MALDI-TOF)技术,是已知突变位点单核苷酸多态性(single nucleotide polymorphism,SNP)分型的基因分析工具4。与以往基因检测技术相比,MassARRAY技术具有高通量、检测周期短、标本用量少、灵敏度高、成本低廉等优点,可应用于基因的单核苷酸多态性分析、DNA甲基化分析和基因拷贝数鉴定等研究5。本研究利用MassARRAY技术对串联质谱筛查的疑似阳性患儿进行基因检测,探讨该技术应用于新生儿遗传代谢病分子诊断的准确性、时效性与可行性。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Ferreira CR , van Karnebeek C . Inborn errors of metabolism[J]. Handb Clin Neurol, 2019,162:449-481. doi: 10.1016/B978-0-444-64029-1.00022-9 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Martínez-Morillo E , Prieto García B , Álvarez Menéndez FV . Challenges for worldwide harmonization of newborn screening programs[J]. Clin Chem, 2016,62(5):689-698. doi: 10.1373/clinchem.2015.240903 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Ryckman KK , Berberich SL , Shchelochkov OA ,et al. Clinical and environmental influences on metabolic biomarkers collected for newborn screening[J]. Clin Biochem, 2013,46(1-2):133-138. doi: 10.1016/j.clinbiochem.2012.09.013 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Calvo SE , Tucker EJ , Compton AG ,et al. High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency[J]. Nat Genet, 2010,42(10):851-858. doi: 10.1038/ng.659 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
中国核酸质谱应用专家共识协作组. 中国核酸质谱应用专家共识[J]. 中华医学杂志, 2018,98(12):895-900. doi: 10.3760/cma.j.issn.0376-2491.2018.12.004 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
周彬,徐平,崔忠涛,. 哈尔滨地区老年性耳聋与GRHL2基因SNP位点的相关性[J]. 中华耳科学杂志, 2015,13(3):529-532. doi: 10.3969/j.issn.1672-2922.2015.03.034 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
刘宏钱,宋朝晖,梁巧米. 多重RT-PCR MassARRAY技术检测27种呼吸道病原体方法的建立和临床应用评价[J]. 检验医学, 2021,36(9):939-946. doi: 10.3969/j.issn.1673-8640.2021.09.012 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
董丽萍,赵志强,崔艳国. MassARRAY技术在希特林蛋白缺乏症二阶段分子筛查中的应用分析[J]. 国际儿科学杂志, 2022,49(2):140-144. doi: 10.3760/cma.j.issn.1673-4408.2022.02.016 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
周春,吕红,张若洋,. 基于MassARRAY平台的人血小板抗原基因分型的质谱检测方法[J]. 南京医科大学学报(自然科学版), 2021,41(3):361-368. doi: 10.7655/nydxbns20210309 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
陈瑶,苏跃青,周进福,. Mass-array芯片技术在葡萄糖-6-磷酸脱氢酶基因突变位点检测中的应用[J]. 中华检验医学杂志, 2015,38(12):822-826. doi: 10.3760/cma.j.issn.1009-9158.2015.12.008 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
吕志萍,于传亭,王祥,. MassArray技术在苯丙酮尿症患儿家系突变基因检测中的应用[J]. 中华实用儿科临床杂志, 2014,29(20):1599-1600. doi: 10.3760/cma.j.issn.2095-428X.2014.20.025 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Wang X , Wang Y , Ma D ,et al. Neonatal screening and genotype-phenotype correlation of hyperphenylalaninemia in the Chinese population[J]. Orphanet J Rare Dis, 2021,16(1):214. doi: 10.1186/s13023-021-01846-w .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Liu N , Huang Q , Li Q ,et al. Spectrum of PAH gene variants among a population of Han Chinese patients with phenylketonuria from northern China[J]. BMC Med Genet, 2017,18(1):108. doi: 10.1186/s12881-017-0467-7 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Chen T , Xu W , Wu D ,et al. Mutational and phenotypic spectrum of phenylalanine hydroxylase deficiency in Zhejiang Province, China[J]. Sci Rep, 2018,8(1):17137. doi: 10.1038/s41598-018-35373-9 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Ye J , Yang Y , Yu W ,et al. Demographics, diagnosis and treatment of 256 patients with tetrahydrobiopterin deficiency in mainland China: results of a retrospective, multicentre study[J]. J Inherit Metab Dis, 2013,36(5):893-901. doi: 10.1007/s10545-012-9550-6 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Wang T , Ma J , Zhang Q ,et al. Expanded newborn screening for inborn errors of metabolism by tandem mass spectrometry in Suzhou, China: disease spectrum, prevalence, genetic characteristics in a Chinese population[J]. Front Genet, 2019,10:1052. doi: 10.3389/fgene.2019.01052 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Estrella J , Wilcken B , Carpenter K ,et al. Expanded newborn screening in New South Wales: missed cases[J]. J Inherit Metab Dis, 2014,37(6):881-887. doi: 10.1007/s10545-014-9727-2 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Lin Y , Liu Y , Zhu L ,et al. Combining newborn metabolic and genetic screening for neonatal intrahepatic cholestasis caused by citrin deficiency[J]. J Inherit Metab Dis, 2020,43(3):467-477. doi: 10.1002/jimd.12206 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Panmanee J , Antonyuk SV , Hasnain SS . Structural basis of the dominant inheritance of hypermethioninemia associated with the Arg264His mutation in the MAT1A gene[J]. Acta Crystallogr D Struct Biol, 2020,76(Pt 6):594-607. doi: 10.1107/S2059798320006002 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Wang C , Liu Y , Zhang X ,et al. Phenotypic and genotypic analysis of children with methylmalonic academia: a single-center study in China and a recent literature review[J]. Clin Chim Acta, 2021,522:14-22. doi: 10.1016/j.cca.2021.08.008 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Hu S , Mei S , Liu N ,et al. Molecular genetic characterization of cblC defects in 126 pedigrees and prenatal genetic diagnosis of pedigrees with combined methylmalonic aciduria and homocystinuria[J]. BMC Med Genet, 2018,19(1):154. doi: 10.1186/s12881-018-0666-x .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Morscher RJ , Grünert SC , Bürer C ,et al. A single mutation in MCCC1 or MCCC2 as a potential cause of positive screening for 3-methylcrotonyl-CoA carboxylase deficiency[J]. Mol Genet Metab, 2012,105(4):602-606. doi: 10.1016/j.ymgme.2011.12.018 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Li X , He J , He L ,et al. Spectrum analysis of inherited metabolic disorders for expanded newborn screening in a central chinese population[J]. Front Genet, 2021,12:763222. doi: 10.3389/fgene.2021.763222 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Rasmussen J , Køber L , Lund AM ,et al. Primary carnitine deficiency in the Faroe Islands: health and cardiac status in 76 adult patients diagnosed by screening[J]. J Inherit Metab Dis, 2014,37(2):223-230. doi: 10.1007/s10545-013-9640-0 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Komlósi K , Magyari L , Talián GC ,et al. Plasma carnitine ester profile in homozygous and heterozygous OCTN2 deficiency[J]. J Inherit Metab Dis, 2009,32Suppl 1:S15-19. doi: 10.1007/s10545-009-0926-1 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
黄新文,Email:nc.defudabe.ujz2205036
B

张婷:实验设计、文章撰写、统计分析;尚世强:实验设计、文章指导;杨建滨:结果分析、文章指导;周旭晨:结果分析;张玉:数据采集、统计分析;杨茹莱:数据采集、文章指导;黄新文:研究实施、结果分析、文章指导、经费支持

C
张婷, 尚世强, 杨建滨, 等. MassARRAY基因分型技术在新生儿遗传代谢病诊断中的应用[J]. 中华检验医学杂志, 2023, 46(2): 155-162. DOI: 10.3760/cma.j.cn114452-20220321-00164.
D
所有作者声明无利益冲突
E
国家自然科学基金 (82073560)
新疆生产建设兵团第一师医院精鹰计划 (2021YN-JY-01)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号