论著
ENGLISH ABSTRACT
早产儿和足月儿母亲母乳来源外泌体的蛋白质组学差异分析
姜承耀
严湘芸
陈文娟
韩树萍
作者及单位信息
·
DOI: 10.3760/cma.j.cn113903-20220401-00317
Differential proteomic profiling of breast milk-derived extracellular vesicles from mothers of preterm and term infants
Jiang Chengyao
Yan Xiangyun
Chen Wenjuan
Han Shuping
Authors Info & Affiliations
Jiang Chengyao
Department of Pediatrics, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
Yan Xiangyun
Department of Pediatrics, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
Chen Wenjuan
Department of Pediatrics, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
Han Shuping
Department of Pediatrics, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
·
DOI: 10.3760/cma.j.cn113903-20220401-00317
653
125
0
0
3
0
PDF下载
APP内阅读
摘要

目的分析早产和足月儿母乳来源外泌体(breast milk extracellular vesicles,BM-EV)的蛋白质组学差异。

方法收集2019年在南京医科大学附属妇产医院出生的早产儿和足月儿母乳各3例,采用超速离心法提取外泌体。初步鉴定外泌体特征后,采用液相色谱-串联质谱法(liquid chromatography-tandem mass spectrometry,LC-MS/MS)定量分析,筛选出早产儿BM-EV中显著上调的差异蛋白质(差异倍数≥1.5且 P<0.05),并进行GO和KEGG功能预测及相关信号通路分析。采用Mann-Whitney U检验或Fisher精确概率法进行组间比较。以Pearson相关分析描述样品间蛋白质定量值的相关性。使用 t检验比较2组样本间蛋白质丰度的差异,并对结果进行多重校正。应用超几何分布检验,筛选出差异蛋白质中显著富集的GO和KEGG通路条目。

结果(1)早产和足月组初产母亲分别为3例和1例。足月儿和早产儿BM-EV存在标记性蛋白分子分化簇9、分化簇81和热休克蛋白70。(2)6个样本组间可比性较好,组内重复性较高,样品间蛋白定量值的相关性最高达0.99。早产和足月儿样本的变异系数分别为11.21%和19.72%,且早产样本的变异系数比较集中。(3)鉴定得到945种蛋白质。早产与足月儿BM-EV之间存在156种差异蛋白质,其中在早产儿BM-EV中有83种上调。早产儿BM-EV中丰度值前3位的蛋白质分别为补体C4a、脂肪酸合成酶和硬化蛋白结构域蛋白-1。(4)GO功能预测中富集度最高的生物过程或细胞成分主要集中在血红蛋白和糖原的合成,参与免疫突触的构成,Fc γ受体信号通路介导的吞噬作用等。KEGG信号通路相关性最高的通路为核糖体相关通路、补体和凝血级联、中性粒细胞胞外陷阱形成和Fc γ受体介导的吞噬作用等。

结论早产儿BM-EV中显著上调的差异蛋白质可能通过参与调节早产儿的免疫、胃肠道功能和能量代谢过程,从而发挥保护作用。

乳,人;外泌体;细胞外囊泡;蛋白质组学;婴儿,早产
ABSTRACT

ObjectiveTo analyze the differential expression of breast milk-derived extracellular vesicles (BM-EV) from mothers of preterm and term infants .

MethodsBreast milk samples were collected from preterm and term delivery (three cases in each) at the Women's Hospital of Nanjing Medical University in 2019. BM-EV was extracted using ultracentrifugation. After preliminary identification of the characteristics of BM-EV, liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used for protein quantification. Significantly up-regulated differential proteins (fold change≥1.5 and P<0.05) in the preterm group were screened. GO and KEGG were performed to predict the differentially expressed proteins' functional annotation and determine associated signaling pathways. Mann-Whitney U test and Fisher's exact test were used for intergroup comparisons. Pearson's correlation test describes the correlation of protein quantification values between samples. The differences in protein abundance were compared between the two groups using a t-test, followed by multiple corrections. Additionally, significantly enriched GO terms and KEGG pathways of the differentially expressed proteins were screened based on the hypergeometric distribution.

Results(1) There were three primiparae in the preterm group and one in the term group. Marker proteins CD9, CD81, and HSP70 were enriched in the BM-EV of both groups. (2) Six samples were comparable between groups and showed high reproducibility within groups. The correlation of protein quantification values between samples was up to 0.99. Furthermore, the coefficient of variation was 11.21% for preterm samples and 19.72% for term, and the data values in the preterm group were relative. (3) A total of 945 proteins were identified, and 156 were differentially expressed between preterm and term BM-EV, with 83 significantly up-regulated in preterm BM-EV. In the up-regulated proteins, the top three high-abundance proteins were complemented C4a, fatty acid synthase, and sclerostin domain-containing protein-1. (4) The biological processes or cellular components with the highest enrichment in GO functional prediction were mainly involved in hemoglobin and glycogen biosynthesis, immunological synapse formation, and phagocytosis mediated by the Fc γ receptor signaling pathway. The most relevant KEGG pathways were ribosome-related, complement and coagulation cascades, neutrophil extracellular trap formation, and Fc γ receptor-mediated phagocytosis.

ConclusionThe significantly up-regulated differential proteins in BM-EV may play a protective role by regulating immunity, gastrointestinal function, and energy metabolism in preterm infants.

Milk, human;Exosomes;Extracellular vesicles;Proteomics;Infant, premature
Han Shuping, Email: nc.defudabe.umjnnahgnipuhs, Tel: 0086-25-52226578
引用本文

姜承耀,严湘芸,陈文娟,等. 早产儿和足月儿母亲母乳来源外泌体的蛋白质组学差异分析[J]. 中华围产医学杂志,2023,26(02):113-120.

DOI:10.3760/cma.j.cn113903-20220401-00317

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
母乳是婴儿早期最佳的营养来源,其维系子代健康的强大益处来源于其中的多种生物活性成分,如乳铁蛋白、免疫球蛋白、低聚糖和生长因子等 1。母乳中亦含有丰富的外泌体,且受到越来越多的关注及研究报道 2 , 3。外泌体是直径30~150 nm的胞外脂质双层包裹的囊泡,广泛分布于人体体液(如血液、尿液、唾液、母乳等)中。外泌体可在细胞间发挥信息传递功能,介导细胞间的通讯交流。目前关于母乳外泌体(breast milk extracellular vesicles,BM-EV)的研究主要聚焦于外泌体携带的微小RNA功能。BM-EV参与新生儿的脂质和葡萄糖代谢、肠道成熟、神经发生和免疫等过程 4。研究发现,母亲的疾病状态会对功能微小RNA丰度产生影响,从而间接调控子代的发育代谢 5。此外,已有不少研究证实了BM-EV可以促进肠道细胞活性 6 , 7。本课题组前期分别从多肽、脂质和非编码基因等角度揭示了BM-EV的重要活性成分的变化 8 , 9 , 10,为深入探索BM-EV的母婴保护作用提供了研究基础。
蛋白质组学是研究母乳成分常用的技术。最新的母乳蛋白质组学研究主要集中在地理和种族因素影响下母乳蛋白质的变异性,蛋白质翻译后修饰(如糖基化、磷酸化)和内源性母乳肽的功能。然而目前对处于疾病或早产儿母亲母乳的蛋白质组学研究仍较为有限。近来研究报道,外泌体的蛋白质组学分析在研究代谢疾病和免疫调节等方面具有重要意义 11,对研究和评价疾病的发展、诊断、治疗和预后等方面具有广阔的前景。借助蛋白质组学分析BM-EV的蛋白质富集情况,有助于进一步理解BM-EV的分子组成和生物功能,并有助于为早产儿喂养指导、研究疾病生物标志物和开发功能性食品提供新方向。
早产儿和足月儿母亲的母乳在能量和蛋白质含量方面存在较大差异 12 , 13,大量临床研究也提示亲母母乳喂养是不可取代的 14 , 15。但一些新生儿,特别是早产儿,常由于母婴分离或母亲产后并发症等原因无法获得充足的母乳 16 , 17。然而,目前仍缺乏关于早产和足月BM-EV来源差异蛋白质的蛋白质组学研究。为深入探索母乳喂养对早产儿的保护作用,本研究拟分析早产和足月儿母亲母乳BM-EV的蛋白质组学差异,以有助于深入理解BM-EV的蛋白质对早产儿保护作用的可能机制。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Thai JD , Gregory KE . Bioactive factors in human breast milk attenuate intestinal inflammation during early life[J]. Nutrients, 2020,12(2):581. DOI: 10.3390/nu12020581 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Hu Y , Thaler J , Nieuwland R . Extracellular vesicles in human milk[J]. Pharmaceuticals(Basel), 2021,14(10):1050. DOI: 10.3390/ph14101050 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Galley JD , Besner GE . The therapeutic potential of breast milk-derived extracellular vesicles[J]. Nutrients, 2020,12(3):745. DOI: 10.3390/nu12030745 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Leroux C , Chervet ML , German JB . Perspective: Milk microRNAs as important players in infant physiology and development[J]. Adv Nutr, 2021,12(5):1625-1635. DOI: 10.1093/advances/nmab059 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Shah KB , Fields DA , Pezant NP ,et al. Gestational diabetes mellitus is associated with altered abundance of exosomal MicroRNAs in human milk[J]. Clin Ther, 2022,44(2):172-185.e1. DOI: 10.1016/j.clinthera.2022.01.005 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Miyake H , Lee C , Chusilp S ,et al. Human breast milk exosomes attenuate intestinal damage[J]. Pediatr Surg Int, 2020,36(2):155-163. DOI: 10.1007/s00383-019-04599-7 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Ross M , Atalla H , Karrow N ,et al. The bioactivity of colostrum and milk exosomes of high, average, and low immune responder cows on human intestinal epithelial cells[J]. J Dairy Sci, 2021,104(3):2499-2510. DOI: 10.3168/jds.2020-18405 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Chen W , Chen X , Qian Y ,et al. Lipidomic profiling of human milk derived exosomes and their emerging roles in the prevention of necrotizing enterocolitis[J]. Mol Nutr Food Res, 2021,65(10):e2000845. DOI: 10.1002/mnfr.202000845 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Wang X , Yan X , Zhang L ,et al. Identification and peptidomic profiling of exosomes in preterm human milk: insights into necrotizing enterocolitis prevention[J]. Mol Nutr Food Res, 2019:e1801247. DOI: 10.1002/mnfr.201801247 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Zhou Y , Yu Z , Wang X ,et al. Exosomal circRNAs contribute to intestinal development via the VEGF signalling pathway in human term and preterm colostrum[J]. Aging(Albany NY), 2021,13(8):11218-11233. DOI: 10.18632/aging.202806 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Hou R , Li Y , Sui Z ,et al. Advances in exosome isolation methods and their applications in proteomic analysis of biological samples[J]. Anal Bioanal Chem, 2019,411(21):5351-5361. DOI: 10.1007/s00216-019-01982-0 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Bauer J , Gerss J . Longitudinal analysis of macronutrients and minerals in human milk produced by mothers of preterm infants[J]. Clin Nutr, 2011,30(2):215-220. DOI: 10.1016/j.clnu.2010.08.003 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Nielsen SD , Beverly RL , Underwood MA ,et al. Differences and similarities in the peptide profile of preterm and term mother's milk,and preterm and term infant gastric samples[J]. Nutrients, 2020,12(9):2825. DOI: 10.3390/nu12092825 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Victora CG , Bahl R , Barros AJ ,et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect[J]. Lancet, 2016,387(10017):475-490. DOI: 10.1016/S0140-6736(15)01024-7 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Parker MG , Stellwagen LM , Noble L ,et al. Promoting human milk and breastfeeding for the very low birth weight infant[J]. Pediatrics, 2021,148(5):e2021054272. DOI: 10.1542/peds.2021-054272 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Meier PP , Johnson TJ , Patel AL ,et al. Evidence-based methods that promote human milk feeding of preterm infants: an expert review[J]. Clin Perinatol, 2017,44(1):1-22. DOI: 10.1016/j.clp.2016.11.005 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Heller N , Rüdiger M , Hoffmeister V ,et al. Mother's own milk feeding in preterm newborns admitted to the neonatal intensive care unit or special-care nursery: obstacles, interventions, risk calculation[J]. Int J Environ Res Public Health, 2021,18(8):4140. DOI: 10.3390/ijerph18084140 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Théry C , Amigorena S , Raposo G ,et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids[J]. Curr Protoc Cell Biol, 2006,3(3):22. DOI: 10.1002/0471143030.cb0322s30 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Kowal J , Arras G , Colombo M ,et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes[J]. Proc Natl Acad Sci U S A, 2016,113(8):E968-977. DOI: 10.1073/pnas.1521230113 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Han L , Zhao Z , Chen X ,et al. Human umbilical cord mesenchymal stem cells-derived exosomes for treating traumatic pancreatitis in rats[J]. Stem Cell Res Ther, 2022,13(1):221. DOI: 10.1186/s13287-022-02893-1 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Schubert OT , Röst HL , Collins BC ,et al. Quantitative proteomics:challenges and opportunities in basic and applied research[J]. Nat Protoc, 2017,12(7):1289-1294. DOI: 10.1038/nprot.2017.040 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Aebersold R , Mann M . Mass spectrometry-based proteomics[J]. Nature, 2003,422(6928):198-207. DOI: 10.1038/nature01511 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Beer LA , Kossenkov AV , Liu Q ,et al. Baseline immunoglobulin E levels as a marker of doxorubicin- and trastuzumab-associated cardiac dysfunction[J]. Circ Res, 2016,119(10):1135-1144. DOI: 10.1161/CIRCRESAHA.116.309004 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Kacal M , Zhang B , Hao Y ,et al. Quantitative proteomic analysis of temporal lysosomal proteome and the impact of the KFERQ-like motif and LAMP2A in lysosomal targeting[J]. Autophagy, 2021,17(11):3865-3874. DOI: 10.1080/15548627.2021.1876343 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Zhong J , Xia B , Shan S ,et al. High-quality milk exosomes as oral drug delivery system[J]. Biomaterials, 2021,277:121126. DOI: 10.1016/j.biomaterials.2021.121126 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
van Herwijnen MJ , Zonneveld MI , Goerdayal S ,et al. Comprehensive proteomic analysis of human milk-derived extracellular vesicles unveils a novel functional proteome distinct from other milk components[J]. Mol Cell Proteomics, 2016,15(11):3412-3423. DOI: 10.1074/mcp.M116.060426 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Vaswani KM , Peiris H , Qin Koh Y ,et al. A complete proteomic profile of human and bovine milk exosomes by liquid chromatography mass spectrometry[J]. Expert Rev Proteomics, 2021,18(8):719-735. DOI: 10.1080/14789450.2021.1980389 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Liu L , Wu S , Yang Y ,et al. SOSTDC1 is down-regulated in non-small cell lung cancer and contributes to cancer cell proliferation[J]. Cell Biosci, 2016,6:24. DOI: 10.1186/s13578-016-0091-9 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Wu X , Wang Y , Huang R ,et al. SOSTDC1-producing follicular helper T cells promote regulatory follicular T cell differentiation[J]. Science, 2020,369(6506):984-988. DOI: 10.1126/science.aba6652 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Chen Z , Xie Y , Luo J ,et al. Milk exosome-derived miRNAs from water buffalo are implicated in immune response and metabolism process[J]. BMC Vet Res, 2020,16(1):123. DOI: 10.1186/s12917-020-02339-x .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Bromley SK , Burack WR , Johnson KG ,et al. The immunological synapse[J]. Annu Rev Immunol, 2001,19:375-396. DOI: 10.1146/annurev.immunol.19.1.375 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Wang X , Wang W , Wang X ,et al. The septin complex links the catenin complex to the actin cytoskeleton for establishing epithelial cell polarity[J]. J Mol Cell Biol, 2021,13(6):395-408. DOI: 10.1093/jmcb/mjab036 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Zhang H , Ma J , Tang K ,et al. Beyond energy storage:roles of glycogen metabolism in health and disease[J]. FEBS J, 2021,288(12):3772-3783. DOI: 10.1111/febs.15648 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Paradis T , Bègue H , Basmaciyan L ,et al. Tight junctions as a key for pathogens invasion in intestinal epithelial cells[J]. Int J Mol Sci, 2021,22(5):2506. DOI: 10.3390/ijms22052506 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Hidalgo A , Libby P , Soehnlein O ,et al. Neutrophil extracellular traps: from physiology to pathology[J]. Cardiovasc Res, 2022,118(13):2737-2753. DOI: 10.1093/cvr/cvab329 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
韩树萍,Email: nc.defudabe.umjnnahgnipuhs,电话:025-52226578
B

姜承耀:实施研究、分析及解释数据、论文撰写及修改、统计分析;严湘芸、陈文娟:数据分析及论文审阅,数据收集,论文修改;韩树萍:研究设计和研究指导、数据分析、论文审阅及修改

C
姜承耀, 严湘芸, 陈文娟, 等. 早产儿和足月儿母亲母乳来源外泌体的蛋白质组学差异分析[J]. 中华围产医学杂志, 2023, 26(2): 113-120. DOI: 10.3760/cma.j.cn113903-20220401-00317.
D
所有作者声明无利益冲突
E
国家自然科学基金 (81971427,82101814)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号