实验研究
ENGLISH ABSTRACT
MiR-497对角膜新生血管的抑制作用及其靶向STAT3调控机制
王杨
杨燕宁
潘玉苗
黄钰清
周奕文
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20210201-00084
Inhibitory effect of miR-497 on corneal neovascularization and its regulation mechanism targeting STAT3
Wang Yang
Yang Yanning
Pan Yumiao
Huang Yuqing
Zhou Yiwen
Authors Info & Affiliations
Wang Yang
Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, China
Yang Yanning
Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, China
Pan Yumiao
Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, China
Huang Yuqing
Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, China
Zhou Yiwen
Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, China
·
DOI: 10.3760/cma.j.cn115989-20210201-00084
0
0
0
0
0
0
PDF下载
APP内阅读
摘要

目的探讨miR-497在碱烧伤诱导的角膜新生血管(CNV)形成过程中的作用及其机制。

方法选用健康清洁级6~8周龄野生型(WT)C57BL/6小鼠42只以及成功鉴定为CRISPR/Cas9介导的miR-497敲除(KO)和过表达转基因(TG)小鼠各42只,分别作为WT组、KO组和TG组。构建角膜碱烧伤模型,分别于造模后第3、7、14、21天行裂隙灯显微镜检查并进行角膜上皮损伤评分和角膜基质混浊评分,测量CNV面积;采用组织病理染色法观察角膜结构变化和炎症细胞的表达;采用免疫组织化学染色法检测角膜组织中CD31的表达;采用荧光素酶报告基因检测miR-497与信号转导及转录激活蛋白3(STAT3)之间的靶向结合关系;采用实时荧光定量PCR法检测各时间点小鼠角膜组织中miR-497以及血管内皮生长因子A(VEGFA)、肿瘤坏死因子(TNF)-α、白细胞介素(IL)-6、IL-1β、单核细胞趋化蛋白(MCP)-1 mRNA的相对表达量变化;采用Western blot法检测各组造模后14 d角膜组织中STAT3、p-STAT3蛋白的表达。

结果小鼠角膜碱烧伤后出现角膜损伤和炎症细胞浸润,同时出现CNV。角膜上皮损伤评分、角膜基质混浊评分和CNV面积呈现先升高后降低的趋势,并在造模后第14天时达峰值。各组造模后不同时间点角膜上皮损伤评分、角膜基质混浊评分、CNV面积和CD31阳性细胞数总体比较差异均有统计学意义(F分组=49.19、34.56、44.56、77.56,均P<0.01;F时间=51.62、65.62、71.32、46.12,均P<0.01);其中KO组各时间点角膜上皮损伤评分、角膜基质混浊评分、CNV面积和CD31阳性细胞数均高于WT组和TG组,TG组各指标均低于WT组,差异均有统计学意义(均P<0.05)。在野生型STAT3共转染细胞中,miR-497组荧光素酶活性明显低于miR-阴性对照组和正常对照组,差异有统计学意义(均P<0.05);在突变型STAT3转染细胞中,各组间荧光素酶活性比较,差异无统计学意义(F=0.69,P=0.56)。WT组、KO组、TG组造模后14 d角膜组织中miR-497的相对表达量分别为0.68±0.11、0.41±0.06、1.05±0.14,均明显低于造模前的1.00±0.04、0.56±0.07、1.34±0.11,差异均有统计学意义(均P<0.01)。造模后第14天,KO组STAT3及p-STAT3蛋白相对表达量均明显高于WT组和TG组,TG组各蛋白相对表达量低于WT组,差异均有统计学意义(均P<0.05)。各组造模后各时间点VEGFA、TNF-α、IL-6、IL-1β和MCP-1 mRNA相对表达量均明显高于造模前,KO组各mRNA相对表达量明显高于同时间点WT组和TG组,TG组各mRNA相对表达量明显低于同时间点WT组,差异均有统计学意义(均P<0.01)。

结论MiR-497可抑制碱烧伤诱导的角膜炎症反应及CNV形成,其可能通过靶向STAT3抑制炎症信号通路的激活。

角膜新生血管;微小RNA;炎症因子;STAT3;碱烧伤
ABSTRACT

ObjectiveTo investigate the role of microRNA (miR)-497 in the formation of corneal neovascularization (CNV) induced by alkali burn and its mechanism.

MethodsForty-two wild type (WT) C57BL/6 mice aged 6 to 8 weeks, 42 CRISPR/Cas9 mediated miR-497 knockout (KO) and 42 CRISPR/Cas9 mediated overexpression transgenic (TG) C57BL/6 mice were selected and assigned as WT group, KO group and TG group, respectively.The corneal alkali burn model was established.At 3, 7, 14 and 21 days after modeling, corneal epithelium damage and stromal turbidity were scored according to slit lamp microscopy.The area of neovascularization was measured.Corneal structural changes and expression of inflammatory cells were observed by histopathological staining.The expression of CD31 in corneal tissues was detected by immunohistochemistry staining.The targeted binding relationship between miR-497 and signal transducer and activator of transcription 3 (STAT3) was detected by luciferase reporter assay.The relative expressions of miR-497, vascular endothelial growth factor A (VEGFA), tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β and macrophage inflammatory protein (MCP)-1 mRNA were detected by real-time quantitative PCR.At 14 days following modeling, the expression of STAT3 and p-STAT3 proteins in mice corneal tissues was detected by Western blot.The use and care of animals complied with the ARVO statement.The study protocol was approved by the Ethics Committee of Renmin Hospital of Wuhan University (No.2019K-K010).

ResultsCorneal injury, inflammatory cell infiltration and CNV occurred in mice cornea after alkali burn.Corneal epithelial injury score, corneal stromal turbidity score and CNV area increased first and reached the peak on the 14th day after modeling, and then decreased.There were significant differences in corneal epithelial injury score, corneal stromal turbidity score, CNV area and number of CD31-positive cells among various time points after alkali burn (Fgroup=49.19, 34.56, 44.56, 77.56; all at P<0.01;Ftime=51.62, 65.62, 71.32, 46.12; all at P<0.01). Corneal epithelial injury score, corneal stromal turbidity score, CNV area and the number of CD31-positive cells were greater in KO group at various time points than in WT and TG groups, and those in WT group were greater than in TG group (all atP<0.05). In WT STAT3 co-transfected cells, the luciferase activity of the miR-497 group was significantly lower than that of the miR-negative control group and normal control group (both atP<0.05). In mutant STAT3-transfected cells, there was no significant difference in luciferase activity among all groups (F=0.69, P=0.56). On the 14th day after modeling, the relative expression levels of miR-497 in corneal tissue of WT, KO and TG groups were 0.68±0.11, 0.41±0.06 and 1.05±0.14, respectively, which were significantly lower than 1.00±0.04, 0.56±0.07 and 1.34±0.11 before modeling (all at P<0.01). The relative expressions of STAT3 and p-STAT3 were higher in KO group than in WT and TG groups, and were lower in TG group than in WT group, and the differences were statistically significant (all atP<0.05). The expressions of VEGFA, TNF-α, IL-6, IL-1β and MCP-1 mRNA at various time points after modeling in various groups were significantly higher than before modeling, which were higher in KO group than in WT and TG groups and were lower in TG group than in WT group, and the differences were statistically significant (all atP<0.01).

ConclusionsMiR-497 inhibits corneal inflammation and CNV formation induced by alkali burn.It might inhibit the activation of the inflammation signal pathway via targeting STAT3.

Corneal neovascularization;MicroRNAs;Inflammatory cytokines;STAT3;Alkali burn
Yang Yanning, Email: mocdef.3ab61nyyhpo
引用本文

王杨,杨燕宁,潘玉苗,等. MiR-497对角膜新生血管的抑制作用及其靶向STAT3调控机制[J]. 中华实验眼科杂志,2023,41(03):206-216.

DOI:10.3760/cma.j.cn115989-20210201-00084

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
角膜新生血管(corneal neovascularization,CNV)是一种威胁视力的疾病,每年患病人群达140多万人,若不及时治疗,会导致组织瘢痕、水肿、脂质沉积和持续性炎症,严重影响患者视力和生活质量[ 1 ]。目前CNV的治疗方案包括局部应用类固醇、手术干预、激光消融、光动力治疗和细针透热疗法,但因设备成本高、易诱发微穿孔和出血等未得到广泛推广。目前主流的抗血管内皮生长因子(vascular endothelial growth factor,VEGF)抑制剂注射疗法存在部分患者不耐受和易复发等问题,且需多次注射,医疗成本较高[ 2 , 3 , 4 , 5 , 6 ]。研究表明,炎症是CNV的重要始动因素和调控因素,与VEGF之间存在相互作用,与眼部新生血管的形成密切相关[ 7 , 8 ]。信号转导及转录激活蛋白3(signal transducer and activator of transcription 3,STAT3)在免疫调节中发挥重要作用,其在激活状态下可进一步释放炎症因子,调节免疫炎症反应,影响CNV形成和发展[ 9 , 10 ]。据报道,微小RNA(microRNA,miRNA)参与病理性和发育性血管生成,部分miRNA在角膜上皮中优先表达,调节细胞增生、迁移等功能,其中miR-497是预后良好的标志物,其可抑制肿瘤细胞的增生、迁徙并有负向调控血管形成的作用[ 11 , 12 , 13 ]。MiR-497与STAT3的3'非翻译区存在互补结合位点,推测miR-497可能靶向调控STAT3。本研究拟对野生型(wild type,WT)C57BL/6小鼠、CRISPR/Cas9介导的miR-497敲除(knockout,KO)和过表达转基因(transgenic,TG)C57BL/6小鼠进行碱烧伤CNV造模,探讨miR-497对CNV发生和发展的影响及其可能的免疫调控机制,希望为CNV临床诊疗提供新的思路。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Roshandel D , Eslani M , Baradaran-Rafii A et al. Current and emerging therapies for corneal neovascularization[J]Ocul Surf 201816(4):398-414. doi: 10.1016/j.jtos.2018.06.004 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Gupta D , Illingworth C Treatments for corneal neovascularization:a review[J]Cornea 201130(8):927-938. doi: 10.1097/ICO.0b013e318201405a .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Bakunowicz-azarczyk A , Urban B Assessment of therapeutic options for reducing alkali burn-induced corneal neovascularization and inflammation[J]Adv Med Sci 201661(1):101-112. doi: 10.1016/j.advms.2015.10.003 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Liu X , Guo A , Tu Y et al. Fruquintinib inhibits VEGF/VEGFR2 axis of choroidal endothelial cells and M1-type macrophages to protect against mouse laser-induced choroidal neovascularization[J/OL]Cell Death Dis 202011(11):1016[2022-05-28]. http://www.ncbi.nlm.nih.gov/pubmed/33247124. doi: 10.1038/s41419-020-03222-1 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Ellenberg D , Azar DT , Hallak JA et al. Novel aspects of corneal angiogenic and lymphangiogenic privilege[J]Prog Retin Eye Res 201029(3):208-248. doi: 10.1016/j.preteyeres.2010.01.002 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Song J , Lee K , Park SW et al. Lactic acid upregulates VEGF expression in macrophages and facilitates choroidal neovascularization[J]Invest Ophthalmol Vis Sci 201859(8):3747-3754. doi: 10.1167/iovs.18-23892 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Baradaran-Rafii A , Eslani M , Haq Z et al. Current and upcoming therapies for ocular surface chemical injuries[J]Ocul Surf 201715(1):48-64. doi: 10.1016/j.jtos.2016.09.002 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Yu H , Sun L , Cui J et al. Three kinds of corneal host cells contribute differently to corneal neovascularization[J]EBioMedicine 201944:542-553. doi: 10.1016/j.ebiom.2019.05.026 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Hillmer EJ , Zhang H , Li HS et al. STAT3 signaling in immunity[J]Cytokine Growth Factor Rev 201631:1-15. doi: 10.1016/j.cytogfr.2016.05.001 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Parri E , Kuusanmäki H , van Adrichem AJ et al. Identification of novel regulators of STAT3 activity[J/OL]PLoS One 202015(3):e0230819[2022-06-02]. http://www.ncbi.nlm.nih.gov/pubmed/32231398. doi: 10.1371/journal.pone.0230819 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Chen L , Heikkinen L , Wang C et al. Trends in the development of miRNA bioinformatics tools[J]Brief Bioinform 201920(5):1836-1852. doi: 10.1093/bib/bby054 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Wang W , Ren F , Wu Q et al. MicroRNA-497 suppresses angiogenesis by targeting vascular endothelial growth factor A through the PI3K/AKT and MAPK/ERK pathways in ovarian cancer[J]Oncol Rep 201432(5):2127-2133. doi: 10.3892/or.2014.3439 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Li J , Zhang Y , Wang X et al. microRNA-497 overexpression decreases proliferation,migration and invasion of human retinoblastoma cells via targeting vascular endothelial growth factor A[J]Oncol Lett 201713(6):5021-5027. doi: 10.3892/ol.2017.6083 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Di Zazzo A , Kheirkhah A , Abud TB et al. Management of high-risk corneal transplantation[J]Surv Ophthalmol 201762(6):816-827. doi: 10.1016/j.survophthal.2016.12.010 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Zhou H , Zhang W , Bi M et al. The molecular mechanisms of action of PPAR-γ agonists in the treatment of corneal alkali burns (review)[J]Int J Mol Med 201638(4):1003-1011. doi: 10.3892/ijmm.2016.2699 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Liu CH , Wang Z , Sun Y et al. Animal models of ocular angiogenesis:from development to pathologies[J]FASEB J 201731(11):4665-4681. doi: 10.1096/fj.201700336R .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Ormerod LD , Abelson MB , Kenyon KR . Standard models of corneal injury using alkali-immersed filter discs[J]Invest Ophthalmol Vis Sci 198930(10):2148-2153.
返回引文位置Google Scholar
百度学术
万方数据
[18]
Wu P , Zhang D , Geng Y et al. Circular RNA-ZNF609 regulates corneal neovascularization by acting as a sponge of miR-184[J/OL]Exp Eye Res 2020192:107937[2022-06-03]. http://www.ncbi.nlm.nih.gov/pubmed/31954666. doi: 10.1016/j.exer.2020.107937 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Mukwaya A , Mirabelli P , Lennikov A et al. Repeat corneal neovascularization is characterized by more aggressive inflammation and vessel invasion than in the initial phase[J]Invest Ophthalmol Vis Sci 201960(8):2990-3001. doi: 10.1167/iovs.19-27591 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Lee SH , Kim KW , Joo K et al. Angiogenin ameliorates corneal opacity and neovascularization via regulating immune response in corneal fibroblasts[J/OL]BMC Ophthalmol 201616:57[2022-06-03]. http://www.ncbi.nlm.nih.gov/pubmed/27356868. doi: 10.1186/s12886-016-0235-z .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Torrecilla J , Del Pozo-Rodríguez A , Vicente-Pascual M et al. Targeting corneal inflammation by gene therapy:emerging strategies for keratitis[J]Exp Eye Res 2018176:130-140. doi: 10.1016/j.exer.2018.07.006 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Jayaram H , Cepurna WO , Johnson EC et al. MicroRNA expression in the glaucomatous retina[J]Invest Ophthalmol Vis Sci 201556(13):7971-7982. doi: 10.1167/iovs.15-18088 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Liu Z , Wu S , Wang L et al. Prognostic value of microRNA-497 in various cancers:a systematic review and meta-analysis[J/OL]Dis Markers 20192019:2491291[2022-06-03]. http://pubmed.ncbi.nlm.nih.gov/31191744. doi: 10.1155/2019/2491291 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Nakamura R , Sene A , Santeford A et al. IL10-driven STAT3 signalling in senescent macrophages promotes pathological eye angiogenesis[J/OL]Nat Commun 20156:7847[2022-06-03]. http://www.ncbi.nlm.nih.gov/pubmed/26260587. doi: 10.1038/ncomms8847 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Zhou X , Yan T , Huang C et al. Melanoma cell-secreted exosomal miR-155-5p induce proangiogenic switch of cancer-associated fibroblasts via SOCS1/JAK2/STAT3 signaling pathway[J/OL]J Exp Clin Cancer Res 201837(1):242[2022-06-06]. http://www.ncbi.nlm.nih.gov/pubmed/30285793. doi: 10.1186/s13046-018-0911-3 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Kurdi M , Zgheib C , Booz GW . Recent developments on the crosstalk between STAT3 and inflammation in heart function and disease[J/OL]Front Immunol 20189:3029[2022-06-06]. https://pubmed.ncbi.nlm.nih.gov/30619368/. doi: 10.3389/fimmu.2018.03029 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Qu M , Qi X , Wang Q et al. Therapeutic effects of STAT3 inhibition on experimental murine dry eye[J]Invest Ophthalmol Vis Sci 201960(12):3776-3785. doi: 10.1167/iovs.19-26928 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Oladipupo FO , Yu CR , Olumuyide E et al. STAT3 deficiency in B cells exacerbates uveitis by promoting expansion of pathogenic lymphocytes and suppressing regulatory B cells (Bregs) and Tregs[J/OL]Sci Rep 202010(1):16188[2022-06-06]. http://www.ncbi.nlm.nih.gov/pubmed/33004854. doi: 10.1038/s41598-020-73093-1 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Claesson-Welsh L , Welsh M VEGFA and tumour angiogenesis[J]J Intern Med 2013273(2):114-127. doi: 10.1111/joim.12019 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Wang Y , Gao Y , Huang Y et al. The potential protective effects of miR-497 on corneal neovascularization are mediated via macrophage through the IL-6/STAT3/VEGF signaling pathway[J/OL]Int Immunopharmacol 202196:107745[2023-02-02]. http://www.ncbi.nlm.nih.gov/pubmed/33984719. doi: 10.1016/j.intimp.2021.107745 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Shen T , Wu Y , Cai W et al. LncRNA Meg3 knockdown reduces corneal neovascularization and VEGF-induced vascular endothelial angiogenesis via SDF-1/CXCR4 and Smad2/3 pathway[J/OL]Exp Eye Res 2022222:109166[2023-02-02]. http://www.ncbi.nlm.nih.gov/pubmed/35820465. doi: 10.1016/j.exer.2022.109166 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Lee HJ , Yoon CH , Kim HJ et al. Ocular microbiota promotes pathological angiogenesis and inflammation in sterile injury-driven corneal neovascularization[J]Mucosal Immunol 202215(6):1350-1362. doi: 10.1038/s41385-022-00555-2 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
杨燕宁,Email:mocdef.3ab61nyyhpo
B

王杨:参与选题与研究设计、收集数据、资料分析和解释、论文撰写及修改;杨燕宁:参与资料分析和解释、论文修改及定稿;潘玉苗、黄钰清、周奕文:参与选题与研究设计、论文修改

C
所有作者均声明不存在利益冲突
D
国家自然科学基金项目 (81770899)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号