临床研究
ENGLISH ABSTRACT
基于膝关节MRI的人工智能重建软骨模型对膝关节软骨损伤的评价
高宏
薛宾阁
吴厦
王亚魁
付鹏飞
沈乐
娄佳旺
马琦
刘璞
蔡谞
作者及单位信息
·
DOI: 10.3760/cma.j.cn121113-20221013-00615
Evaluation of knee cartilage based on MRI artificial intelligence reconstruction model of knee joint
Gao Hong
Xue Binge
Wu Sha
Wang Yakui
Fu Pengfei
Shen Le
Lou Jiawang
Ma Qi
Liu Pu
Cai Xu
Authors Info & Affiliations
Gao Hong
Beijing Tsinghua ChanggungHospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
Xue Binge
Beijing Qinghe-Hospital, Beijing 100085, China
Wu Sha
Beijing MEDERA Medical Group, Beijing 102200, China
Wang Yakui
Beijing Tsinghua ChanggungHospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
Fu Pengfei
Beijing Tsinghua ChanggungHospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
Shen Le
Department of Engineering Physics, Tsinghua University, Beijing 100084, China
Lou Jiawang
Department of Engineering Physics, Tsinghua University, Beijing 100084, China
Ma Qi
Beijing Tsinghua ChanggungHospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
Liu Pu
Beijing MEDERA Medical Group, Beijing 102200, China
Cai Xu
Beijing Tsinghua ChanggungHospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
·
DOI: 10.3760/cma.j.cn121113-20221013-00615
816
173
0
0
3
5
PDF下载
APP内阅读
摘要

目的探讨基于膝关节薄层MRI数据的人工智能(artificial intelligence,AI)重建模型对膝关节软骨损伤评价的可行性。

方法选取2021年5月至2022年4月在北京清华长庚医院以膝关节重度骨关节炎住院且拟行全膝关节置换术的33例患者(共41膝),男15例,年龄(71±5)岁;女26例,年龄(71±9)岁。左膝19例,右膝22例。术前对患侧膝关节进行薄层MR检查,并对膝关节薄层MRI数据进行AI建模,选取模型中软骨部分利用主成分分析(principal component analysis,PCA)进行模型摆正,将术中截取的膝关节胫骨平台软骨依据国际软骨修复协会(International Cartilage Repair Society,ICRS)软骨损伤分级进行分级,并与膝关节AI重建软骨模型及膝关节MRI人工识别的ICRS分级结果进行比较。

结果AI重建软骨模型的软骨损伤分级与术中截取实物标本的软骨损伤分级相比较,AI重建软骨模型对于ICRS分级4级软骨损伤诊断的敏感性、特异性、阳性预测值和阴性预测值分别为93.1%、91.4%、92.2%和80.3%;ROC曲线下面积(AUC)值为0.92,AI重建软骨模型与实物标本ICRS分级的一致性良好,Kappa系数为0.81( P<0.001)。人工识别MRI的软骨损伤分级与实物标本相比,其诊断的敏感性、特异性、阳性预测值和阴性预测值分别为92.10%、91.60%、97.20%和78.8%,Kappa系数为0.79( P<0.001)。

结论基于膝关节薄层MRI的AI重建软骨模型对于诊断ICRS分级4级软骨损伤具有较好的敏感性及特异性。

膝关节;软骨,关节;磁共振成像;人工智能;模型,解剖学
ABSTRACT

ObjectiveTo explore the feasibility of the AI intelligent reconstruction model based on knee joint magnetic resonance data developed by Nuctech Company Limited for evaluating knee cartilage injury.

MethodsThirty-three patients (a total of forty-one knees) who were hospitalized with severe knee osteoarthritis in Beijing Tsinghua Changgung Hospital from May 2021 to April 2022 were selected. All of them were planned to be performed total knee arthroplasty (TKA) for the treatment of knee osteoarthritis. Fifteen males with an average age of 71±5 years old and twenty six females with an average age of 71±9 years old were included in this study. There were 19 cases of left knee and 22 cases of right knee. Thin layer MRI examination on the patients' knee joints was performed before the surgery, and artificial intelligence model based on the thin layer MRI data of the knee joint was reconstructed. The cartilage part of the model was selected and corrected by Principal Component Analysis (PCA) in order to realize model straightening. The tibial plateau cartilage of knee joint which intercepted during operation was classified according to the International Cartilage Repair Society (ICRS). Finally the results were compared with the ICRS classification results of knee artificial intelligence reconstruction model and artificial recognition of knee joint MRI images.

ResultsCompared with the grade of cartilage injury intercepted during our operation which was according to the ICRS classification, the sensitivity of artificial intelligence reconstruction model for the diagnosis of cartilage injury with ICRS classification grade four was 93.1%. The specificity of artificial intelligence reconstruction model was 91.4%. The positive predictive value (PPV) of artificial intelligence reconstruction model was 92.2%. And the negative predictive value (NPV) of artificial intelligence reconstruction model was 80.3%. The area under ROC curve (AUC) was 0.92. The ICRS classification consistency between artificial intelligence model and physical inspection results was good with kappa value 0.81 ( P<0.001) . In the aspect of artificial recognition of cartilage injury grading in MRI images, the sensitivity of artificial recognition was 92.10% compared with the manual identification of cartilage injury classification in MRI images. The specificity of artificial recognition was 91.60%. The positive predictive value (PPV) of artificial recognition was 97.20% and the negative predictive value (NPV) of artificial recognition was 78.8%. The kappa value of the cartilage injury classification in MRI images consistency between artificial recognition and manual identification was 0.79 ( P<0.001).

ConclusionBased on the evaluation of cartilage injury by AI reconstruction model of knee joint, the sensitivity and specificity of the diagnosis of ICRS grade IV cartilage injury can be acceptable, but still needs to be improved.

Knee joint;Cartilage, articular;Magnetic resonance imaging;Artificial intelligence;Models, anatomic
Cai Xu, Email: mocdef.3ab61gneggnahc_uxiac
引用本文

高宏,薛宾阁,吴厦,等. 基于膝关节MRI的人工智能重建软骨模型对膝关节软骨损伤的评价[J]. 中华骨科杂志,2023,43(05):316-321.

DOI:10.3760/cma.j.cn121113-20221013-00615

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
膝关节骨关节炎(osteoarthritis,OA)以膝关节退变为主要特征,早期变化表现在分子水平,只有进展到中晚期才会出现宏观结构的变化,如软骨退变、骨赘形成、软骨下骨改变等,影响关节正常功能,可伴有关节疼痛、活动受限等表现 [ 1 ]。膝关节OA是导致全球中老年人群关节疼痛和功能障碍的主要原因之一 [ 2 ],给全球残疾和卫生资源带来了沉重的负担 [ 3 ]。因此建立适当的OA评估系统,对疾病进程的判断与治疗效果的评估尤为重要。由于社会人口老龄化及肥胖症的增加,在未来的几十年内膝关节OA的发生率预计将明显增加。
目前对膝关节OA的诊断是以膝关节X线片及CT检查为主 [ 4 ]。X线检查因操作简单、费用较低等原因,常作为膝关节OA的首选检查,可以直观地反眏晚期膝关节OA的病情。CT可以清晰显示关节软骨下细微的骨质变化、关节间隙变窄、软骨下骨磨损、囊性变及骨质增生等改变。但是对早期膝关节软骨损伤的直观评价仍以MRI为最佳,同时MRI还能清晰显示滑膜、韧带、半月板等结构。然而,对MRI的识别容易受到影像分辨率、医生临床经验及主观性等影响,使放射科医生及骨科医生的判读结果存在着较大的个体差异 [ 5 ]
人工智能(artificial intelligence,AI)作为新兴的影像判读方法,可有效提高影像数据处理效率,实现影像诊断的自动化和标准化,用于膝关节OA的诊断分析具有帮助医生为患者提供精准医疗服务的潜力,将医生从既往的传统阅片中解放出来。机械学习是AI主要的工作原理,在医学图像处理中得到广泛应用 [ 6 ],包括人工神经网络、k最近邻、支持向量机、朴素贝叶斯、随机森林、卷积神经网络等,但是AI系统对病变的诊断是否准确,既往都是通过深度学习的开发者在AI系统开发过程中以人工识别影像数据作为金标准予以验证 [ 7 ]。但回归于影像学后由于需要不同年资的医生进行影像学识别,所以仍存在主观性的影响。
因此,为区别于既往人工识别,本研究拟通过全膝关节置换术(total knee arthroplasty,TKA)中截取的胫骨平台实物标本作为金标准,对基于膝关节MRI的AI重建软骨模型进行比较,从而判断现有AI软骨重建系统的实际精准性。研究目的:(1)验证基于膝关节薄层MRI的AI重建软骨模型对膝关节软骨损伤诊断的准确性;(2)探讨AI重建软骨模型与胫骨平台实物标本的国际软骨修复协会(International Cartilage Repair Society,ICRS)软骨损伤分级软骨厚度的相关性。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Martel-Pelletier J , Barr AJ , Cicuttini FM ,et al. Osteoarthritis[J]. Nat Rev Dis Primers, 2016,2:16072. DOI: 10.1038/nrdp.2016.72 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Cross M , Smith E , Hoy D ,et al. The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study[J]. Ann Rheum Dis, 2014,73(7):1323-1330. DOI: 10.1136/annrheumdis-2013-204763 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Vina ER , Kwoh CK . Epidemiology of osteoarthritis: literature update[J]. Curr Opin Rheumatol, 2018,30(2):160-167. DOI: 10.1097/BOR.0000000000000479 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Nieminen MT , Casula V , Nevalainen MT ,et al. Osteoarthritis year in review 2018: imaging[J]. Osteoarthritis Cartilage, 2019,27(3):401-411. DOI: 10.1016/j.joca.2018.12.009 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Bien N , Rajpurkar P , Ball RL ,et al. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet[J]. PLoS Med, 2018,15(11):e1002699. DOI: 10.1371/journal.pmed.1002699 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Litjens G , Kooi T , Bejnordi BE ,et al. A survey on deep learning in medical image analysis[J]. Med Image Anal, 2017,42:60-88. DOI: 10.1016/j.media.2017.07.005 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Erickson BJ , Korfiatis P , Akkus Z ,et al. Machine learning for medical imaging[J]. Radiographics, 2017,37(2):505-515. DOI: 10.1148/rg.2017160130 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Shen L , Lu Q , Tang H ,et al. A feasibility study of knee joint semantic segmentation on 3D MR images[J]. CT Theory and Applications, 2022,31(6):1-12. DOI: 10.15953/j.ctta.2022.091 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
England JR , Cheng PM . Artificial intelligence for medical image analysis: a guide for authors and reviewers. AJR Am J Roentgenol, 2019,212(3):513-519. DOI: 10.2214/AJR.18.20490 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Landis JR , Koch GG . The measurement of observer agreement for categorical data[J]. Biometrics, 1977,33(1):159-174.
返回引文位置Google Scholar
百度学术
万方数据
[11]
DeLong ER , DeLong DM , Clarke-Pearson DL . Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach[J]. Biometrics, 1988,44(3):837-845.
返回引文位置Google Scholar
百度学术
万方数据
[12]
Conaghan PG , Hunter DJ , Maillefert JF ,et al. Summary and recommendations of the OARSI FDA osteoarthritis Assessment of Structural Change Working Group[J]. Osteoarthritis Cartilage, 2011,19(5):606-610. DOI: 10.1016/j.joca.2011.02.018 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Shakoor D , Guermazi A , Kijowski R ,et al. Diagnostic p erformance of three-dimensional mri for depicting cartilage defects in the knee: a meta-analysis [J]. Radiology, 2018,289(1):71-82. DOI: 10.1148/radiol.2018180426 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Hunter DJ , Guermazi A , Lo GH ,et al. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score)[J]. Osteoarthritis Cartilage, 2011,19(8):990-1002. DOI: 10.1016/j.joca.2011.05.004 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Roemer FW , Guermazi A , Trattnig S ,et al. Whole joint MRI assessment of surgical cartilage repair of the knee: cartilage repair osteoarthritis knee score (CROAKS)[J]. Osteoarthritis Cartilage, 2014,22(6):779-799. DOI: 10.1016/j.joca.2014.03.014 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Jungmann PM , Kraus MS , Nardo L ,et al. T(2) relaxation time measurements are limited in monitoring progression, once advanced cartilage defects at the knee occur: longitudinal data from the osteoarthritis initiative[J]. J Magn Reson Imaging, 2013,38(6):1415-1424. DOI: 10.1002/jmri.24137 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Schooler J , Kumar D , Nardo L ,et al. Longitudinal evaluation of T1ρ and T2 spatial distribution in osteoarthritic and healthy medial knee cartilage[J]. Osteoarthritis Cartilage, 2014,22(1):51-62. DOI: 10.1016/j.joca.2013.10.014 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
van Tiel J , Bron EE , Tiderius CJ ,et al. Reproducibility of 3D delayed gadolinium enhanced MRI of cartilage (dGEMRIC) of the knee at 3.0 T in patients with early stage osteoarthritis[J]. Eur Radiol, 2013,23(2):496-504. DOI: 10.1007/s00330-012-2616-x .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Peterfy CG , van Dijke CF , Janzen DL ,et al. Quantification of articular cartilage in the knee with pulsed saturation transfer subtraction and fat-suppressed MR imaging: optimization and validation[J]. Radiology, 1994,192(2):485-491. DOI: 10.1148/radiology.192.2.8029420 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
McInerney T , Terzopoulos D . Deformable models in medical image analysis: a survey[J]. Med Image Anal, 1996,1(2):91-108. DOI: 10.1016/s1361-8415(96)80007-7 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Heimann T , Meinzer HP . Statistical shape models for 3D medical image segmentation: a review[J]. Med Image Anal, 2009,13(4):543-563. DOI: 10.1016/j.media.2009.05.004 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Shan L , Zach C , Charles C ,et al. Automatic atlas-based three-label cartilage segmentation from MR knee images[J]. Med Image Anal, 2014,18(7):1233-1246. DOI: 10.1016/j.media.2014.05.008 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Zhao F , Xie X . Energy minimization in medical image analysis: Methodologies and applications. Int J Numer Method Biomed Eng, 2016,32(2):e02733. DOI: 10.1002/cnm.2733 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Liukkonen MK , Mononen ME , Tanska P ,et al. Application of a semi-automatic cartilage segmentation method for biomechanical modeling of the knee joint[J]. Comput Methods Biomech Biomed Engin, 2017,20(13):1453-1463. DOI: 10.1080/10255842.2017.1375477 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Cameron ML , Briggs KK , Steadman JR . Reproducibility and reliability of the outerbridge classification for grading chondral lesions of the knee arthroscopically[J]. Am J Sports Med, 2003,31(1):83-86. DOI: 10.1177/03635465030310012601 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Nakasa T , Ikuta Y , Sawa M ,et al. Evaluation of articular cartilage injury using computed tomography with axial traction in the ankle joint[J]. Foot Ankle Int, 2018,39(9):1120-1127. DOI: 10.1177/1071100718777489 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
蔡谞,Email: mocdef.3ab61gneggnahc_uxiac
B

高宏:研究实施、数据分析与解释、统计分析、论文撰写与修改;薛宾阁:数据整理、统计分析;吴厦:论文审阅;王亚魁:资料收集;付鹏飞、娄佳旺:资料收集、数据整理;沈乐:软件及电脑程序设计;马琦、刘璞:研究设计与指导、统计分析;蔡谞:手术操作、技术指导、方法学指导

C
所有作者声明无利益冲突
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号