共识与指南
ENGLISH ABSTRACT
高通量测序技术在分枝杆菌病诊断中的应用专家共识
高通量测序共识专家组
作者及单位信息
·
DOI: 10.3760/cma.j.cn311365-20221203-00492
Expert consensus on the application of high-throughput sequencing technology in the diagnosis of mycobacterial diseases
Expert Group on Consensus for High-throughput Sequencing
Chu Naihui
Huang Hairong
Authors Info & Affiliations
Expert Group on Consensus for High-throughput Sequencing
Chu Naihui
Tuberculosis Department, Beijing Chest Hospital Affiliated to Capital Medical University, Beijing 101149, China
Huang Hairong
Reference Department, Beijing Chest Hospital Affiliated to Capital Medical University, Beijing 101149, China
·
DOI: 10.3760/cma.j.cn311365-20221203-00492
3911
838
0
1
16
8
PDF下载
APP内阅读
摘要

高通量测序技术在分枝杆菌病领域中的应用日益普及,而在实际应用过程中,临床医师对技术本身及如何合理应用检测结果仍存在很多疑问。本共识针对高通量测序技术临床应用中存在的突出问题,依据公开发表的研究数据和参与专家的应用经验,经众多专家讨论形成,为在分枝杆菌病诊断过程中合理使用高通量测序技术提供参考。

高通量测序;分枝杆菌;诊断
引用本文

高通量测序共识专家组. 高通量测序技术在分枝杆菌病诊断中的应用专家共识[J]. 中华传染病杂志,2023,41(03):175-182.

DOI:10.3760/cma.j.cn311365-20221203-00492

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
高通量测序(high-throughput sequencing)技术在感染性疾病病原学诊断及常见病原微生物的耐药诊断中优势明显,在分枝杆菌病领域也得到越来越广泛的应用,为疑难分枝杆菌病的诊断、鉴别诊断和耐药诊断提供了循证医学证据。然而在实际应用过程中,临床医师对于如何解读高通量测序结果、如何从大量数据中捕获有价值的信息、如何在诸多干扰因素存在的情况下做出正确的判断,均存在困惑。鉴于此,高通量测序共识专家组针对高通量测序技术临床使用过程中存在的突出问题,参考已发表的相关研究数据,并结合参与专家的临床使用经验形成本共识,以期提高该技术的临床应用水平,去伪存真,使这项先进的检验技术得到科学合理的应用。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Rutanga JP , Van Puyvelde S , Heroes AS ,et al. 16S metagenomics for diagnosis of bloodstream infections: opportunities and pitfalls[J]. Expert Rev Mol Diagn, 201818(8):749-759. doi: 10.1080/14737159.2018.1498786 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Tenover FC . Developing molecular amplification methods for rapid diagnosis of respiratory tract infections caused by bacterial pathogens[J]. Clin Infect Dis, 201152(Suppl 4):S338-S345. doi: 10.1093/cid/cir049 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Tessler M , Neumann JS , Afshinnekoo E ,et al. Large-scale differences in microbial biodiversity discovery between 16S amplicon and shotgun sequencing[J]. Sci Rep, 20177(1):6589. doi: 10.1038/s41598-017-06665-3 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Schlaberg R . Microbiome diagnostics[J]. Clin Chem, 202066(1):68-76. doi: 10.1373/clinchem.2019.303248 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Liu MF , Liu Y , Xu DR ,et al. mNGS helped diagnose scrub typhus presenting as a urinary tract infection with high D-dimer levels: a case report[J]. BMC Infect Dis, 202121(1):1219. doi: 10.1186/s12879-021-06889-9 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Zhu T , Cai QQ , Yu J ,et al. Metagenomic next-generation sequencing (mNGS) confirmed a critical case of severe fever with thrombocytopenia syndrome virus (SFTSV)[J]. Clin Chem Lab Med, 202160(2):e42-e45. doi: 10.1515/cclm-2021-0791 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Xie Z , Lai J , Ning C ,et al. A case of paraplegia due to asymptomatic varicella-zoster virus infection in AIDS patient unexpectedly diagnosed by CSF metagenomic next-generation sequencing[J]. BMC Infect Dis, 202121(1):963. doi: 10.1186/s12879-021-06611-9 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
孙雯雯顾瑾范琳. 宏基因组二代测序对不同类型结核病的诊断价值[J]. 中华结核和呼吸杂志 2021,44(2):96-100. doi: 10.3760/cma.j.cn112147-20200316-00343 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Kaiser-Thom S , Gerber V , Collaud A ,et al. Prevalence and WGS-based characteristics of Staphylococcus aureus in the nasal mucosa and pastern of horses with equine pastern dermatitis[J]. BMC Vet Res, 202218(1):79. doi: 10.1186/s12917-021-03053-y .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Bwire G , Sack DA , Almeida M ,et al. Molecular characterization of Vibrio cholerae responsible for cholera epidemics in Uganda by PCR, MLVA and WGS[J]. PLoS Negl Trop Dis, 201812(6):e0006492. doi: 10.1371/journal.pntd.0006492 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Palittapongarnpim P , Mahasirimongkol S , Tokunaga K . Bacterial WGS and host genomewide SNP analysis of tuberculosis patients in Thailand[J]. Infekciâ i Immunitet, 20188(4):576. doi: 10.15789/2220-7619-2018-4-6.37 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
World Health Organization. The use of next-generation sequencing technologies for the detection of mutations associated with drug resistance in Mycobacterium tuberculosis complex: technical guide[R]Genera:World Health Organization, 2018.
返回引文位置Google Scholar
百度学术
万方数据
[13]
中华医学会检验医学分会. 高通量宏基因组测序技术检测病原微生物的临床应用规范化专家共识[J]中华检验医学杂志 202043(12):1181-1195. doi: 10.3760/cma.j.cn114452-20200903-00704 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Food and Drug Administration, HHS. Infectious disease next generation sequencing based diagnostic devices: microbial identification and detection of antimicrobial resistance and virulence markers; draft guidance for industry and food and drug administration staff; extension of comment period[EB/OL]. ( 2016-08-11)[2022-12-03]https://www.federalregister.gov/documents/2016/08/11/2016-19109/infectious-disease-next-generation-sequencing-based-diagnostic-devices-microbial-identification-and.
返回引文位置Google Scholar
百度学术
万方数据
[15]
Guo XJ , Takiff HE , Wang J ,et al. An office building outbreak: the changing epidemiology of tuberculosis in Shenzhen, China[J]. Epidemiol Infect, 2020148e59. doi: 10.1017/S0950268820000552 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Yu H , Zhang Y , Chen X ,et al. Whole-genome sequencing and epidemiological analysis of a tuberculosis outbreak in a high school of southern China[J]. Infect Genet Evol, 2020,83104343. doi: 10.1016/j.meegid.2020.104343 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Roetzer A , Diel R , Kohl TA ,et al. Whole genome sequencing versus traditional genotyping for investigation of a Mycobacterium tuberculosis outbreak: a longitudinal molecular epidemiological study[J]. PLoS Med, 201310(2):e1001387. doi: 10.1371/journal.pmed.1001387 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Zeng X , Kwok JS , Yang KY ,et al. Whole genome sequencing data of 1 110 Mycobacterium tuberculosis isolates identifies insertions and deletions associated with drug resistance[J]. BMC Genomics, 201819(1):365. doi: 10.1186/s12864-018-4734-6 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Herranz M , Pole I , Ozere I ,et al. Mycobacterium tuberculosis acquires limited genetic diversity in prolonged infections, reactivations and transmissions involving multiple hosts[J]. Front Microbiol, 201882661. doi: 10.3389/fmicb.2017.02661 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Schatz MC , Delcher AL , Salzberg SL . Assembly of large genomes using second-generation sequencing[J]. Genome Res, 2010,20(9):1165-1173. doi: 10.1101/gr.101360.109 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Shendure J , Ji H . Next-generation DNA sequencing[J]. Nat Biotechnol, 2008,26(10):1135-1145. doi: 10.1038/nbt1486 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
van Dijk EL , Jaszczyszyn Y , Naquin D ,et al. The third revolution in sequencing technology[J]. Trends Genet, 201834(9):666-681. doi: 10.1016/j.tig.2018.05.008 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Shi Y , Tyson GW , Eppley JM ,et al. Integrated metatranscriptomic and metagenomic analyses of stratified microbial assemblages in the open ocean[J]. ISME J, 2011,5(6):999-1013. doi: 10.1038/ismej.2010.189 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Jain M , Fiddes IT , Miga KH ,et al. Improved data analysis for the MinION nanopore sequencer[J]. Nat Methods, 201512(4):351-356. doi: 10.1038/nmeth.3290 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Miles BN , Ivanov AP , Wilson KA ,et al. Single molecule sensing with solid-state nanopores: novel materials, methods, and applications[J]. Chem Soc Rev, 201342(1):15-28. doi: 10.1039/c2cs35286a .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Karamitros T , Magiorkinis G . Multiplexed targeted sequencing for Oxford Nanopore MinION: a detailed library preparation procedure[J]. Methods Mol Biol, 2018171243-51. doi: 10.1007/978-1-4939-7514-3_4 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Yu G , Shen Y , Zhong F ,et al. Diagnostic accuracy of nanopore sequencing using respiratory specimens in the diagnosis of pulmonary tuberculosis[J]. Int J Infect Dis, 2022122237-243. doi: 10.1016/j.ijid.2022.06.001 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Goig GA , Torres-Puente M , Mariner-Llicer C ,et al. Towards next-generation diagnostics for tuberculosis: identification of novel molecular targets by large-scale comparative genomics[J]. Bioinformatics, 2020,36(4):985-989. doi: 10.1093/bioinformatics/btz729 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Tafess K , Ng T , Lao HY ,et al. Targeted-sequencing workflows for comprehensive drug resistance profiling of Mycobacterium tuberculosis cultures using two commercial sequencing platforms: comparison of analytical and diagnostic performance, turnaround time, and cost[J]. Clin Chem, 202066(6):809-820. doi: 10.1093/clinchem/hvaa092 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
中华医学会检验医学分会临床微生物学组中华医学会微生物学与免疫学分会临床微生物学组中国医疗保健国际交流促进会临床微生物与感染分会. 宏基因组高通量测序技术应用于感染性疾病病原检测中国专家共识[J]中华检验医学杂志 202144(2):107-120. doi: 10.3760/cma.j.cn114452-20201026-00794 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
《中华传染病杂志》编辑委员会. 中国宏基因组学第二代测序技术检测感染病原体的临床应用专家共识[J]. 中华传染病杂志 202038(11):681-689. doi: 10.3760/cma.j.cn311365-20200731-00732 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
中华预防医学会医院感染控制分会. 临床微生物标本采集和送检指南[J]中华医院感染学杂志 201828(20):3192-3200. doi: 10.11816/cn.ni.2018-183362 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
文岚王孝君郭彦昌. 痰中结核分枝杆菌DNA提取方法的比较及在LAMP检测中的应用[J]湖南师范大学学报(医学版), 2013(3):61-65.
返回引文位置Google Scholar
百度学术
万方数据
[34]
中华医学会结核病学分会分枝杆菌菌种中文译名原则专家共识编写组. 分枝杆菌菌种中文译名原则专家共识[J]中华结核和呼吸杂志 201841(7):522-528. doi: 10.3760/cma.j.issn.1001-0939.2018.07.003 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
初乃惠,首都医科大学附属北京胸科医院结核科,北京 101149,Email:mocdef.aabnis4991uhcgnod
B
黄海荣,首都医科大学附属北京胸科医院参比实验室,北京 101149, Email:grodef.3ab21btgnoriahgnauh
C
所有作者均声明不存在利益冲突
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号