实验研究
ENGLISH ABSTRACT
1%阿托品对豚鼠形觉剥夺性近视进展的防控作用及其机制
嵇霄雯
宫博腾
祝颖
鹿大千
刘琳
杜蓓
刘勋
魏瑞华
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20211026-00584
Inhibitory effects of 1% atropine on form deprivation-induced myopia development in guinea pigs and its mechanism
Ji Xiaowen
Gong Boteng
Zhu Ying
Lu Daqian
Liu Lin
Du Bei
Liu Xun
Wei Ruihua
Authors Info & Affiliations
Ji Xiaowen
Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
Gong Boteng
Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
Zhu Ying
Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
Lu Daqian
Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
Liu Lin
Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
Du Bei
Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
Liu Xun
Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
Wei Ruihua
Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
·
DOI: 10.3760/cma.j.cn115989-20211026-00584
646
181
0
0
4
2
PDF下载
APP内阅读
摘要

目的观察质量分数1%阿托品对豚鼠形觉剥夺性近视(FDM)进展的防控作用及其潜在的生物学机制。

方法选取屈光状态正常的3周龄三色豚鼠69只,采用随机数字表法将其随机分为正常对照组19只、FDM模型组19只、FDM+阿托品组19只和阿托品组12只。采用半透明乳胶气球遮盖右眼的方法建立FDM模型,正常对照组不进行实验干预;FDM模型组单纯遮盖右眼4周;FDM+阿托品组遮盖右眼4周,同时每日使用1%阿托品凝胶点眼1次;阿托品组每日使用1%阿托品凝胶点眼1次,共4周。分别于实验前、实验2周和实验4周时采用带状光检影镜进行屈光度测定,采用眼科A型超声仪测量眼轴长度。实验4周时采集完整眼球制作石蜡切片,光学显微镜下观察巩膜组织形态学变化;采集后极部巩膜组织,透射电子显微镜下观察巩膜组织超微结构变化;采用相对和绝对定量同位素标记(iTRAQ)联合液相色谱-串联质谱(LC-MS/MS)技术进行巩膜组织蛋白质质谱检测。

结果正常对照组、FDM模型组、FDM+阿托品组和阿托品组实验眼不同时间点屈光度总体比较,差异均有统计学意义( F 分组=138.892, P<0.001; F 时间=167.270, P<0.001),其中FDM模型组实验2周和4周、FDM+阿托品组实验4周较正常对照组屈光度向近视化方向发展,实验2周和4周FDM+阿托品组较FDM模型组屈光度向远视化方向发展,屈光度比较差异均有统计学意义(均 P<0.001)。正常对照组、FDM模型组、FDM+阿托品组和阿托品组实验眼不同时间点眼轴长度总体比较差异均有统计学意义( F 分组=32.346, P<0.001; F 时间=353.797, P<0.001),其中FDM模型组实验2周和4周、FDM+阿托品组实验4周眼轴长度均长于相应时间点正常对照组,FDM+阿托品组实验2周和4周眼轴长度均短于相应时间点FDM模型组,差异均有统计学意义(均 P<0.01)。FDM模型组豚鼠后极部巩膜胶原纤维排列疏松且紊乱,FDM+阿托品组后极部巩膜胶原纤维排列较规则。正常对照组、FDM模型组、FDM+阿托品组和阿托品组后极部巩膜厚度值分别为(141.74±16.98)、(101.46±9.15)、(112.74±6.24)和(134.30±18.19)μm,总体比较差异有统计学意义( F=6.709, P=0.005),其中FDM模型组后极部巩膜厚度明显小于正常对照组和FDM+阿托品组,差异均有统计学意义(均 P<0.05)。正常对照组、FDM+阿托品组和阿托品组后极部巩膜胶原纤维直径从内到外逐渐增大,FDM模型组后极部巩膜组织内、中、外层纤维直径均较正常对照组减小。巩膜组织蛋白质组学分析发现,FDM模型组与正常对照组以及FDM+阿托品组与FDM模型组间差异倍数均在1.30倍及以上的蛋白85个,其中阿托品干预上调蛋白38个,下调蛋白47个。GO富集分析发现,生物过程主要涉及生物调节、细胞过程、定位及代谢过程等,分子功能主要涉及结合、催化活性、分子功能调控、分子活性及转运活性等,细胞成分主要涉及细胞解剖实体、细胞内物质及含蛋白的复合体。

结论阿托品可增加FDM模型豚鼠巩膜胶原纤维直径,改善胶原纤维排列,抑制巩膜变薄,其控制近视进展的机制可能与巩膜细胞间紧密连接、细胞骨架和细胞外基质重塑密切相关。

阿托品;屈光,眼;近视;形觉剥夺;巩膜;组织形态学;蛋白质组学;动物模型
ABSTRACT

ObjectiveTo observe the prevention and control effect of 1% atropine on the progression of form deprivation myopia (FDM) in guinea pigs and the potential biological mechanism.

MethodsSixty-nine 3-week-old tricolor guinea pigs with normal refraction were randomly divided into a normal control group ( n=19), a FDM group ( n=19), a FDM+ atropine group ( n=19), and an atropine group ( n=12). No intervention was given to guinea pigs in normal control group.The FDM model was established by covering the right eye of guinea pigs with a semitransparent latex facemask for 4 weeks in FDM and FDM+ atropine groups.For the FDM+ atropine group, 1% atropine gel was topically administered to the form-deprived right eyes once a day for 4 weeks.For the atropine group, the right eye was treated with 1% atropine gel once a day for 4 weeks.Refraction and axial length of guinea pigs were measured by retinoscopy and ophthalmic A-scan ultrasonography respectively at baseline, experiment week 2 and week 4.In experiment week 4, eyeballs were enucleated to make sections via the paraffin wax processing procedure, and the microstructural and ultrastructural changes of the sclera were observed under the light microscope and transmission electron microscope, respectively.The isobaric tags for relative and absolute quantitation labeling combined with liquid chromatography-tandem mass spectrometry were used to identify the differentially expressed proteins.Use and care of the animals complied with the Regulation for the Administration of Affairs Concerning Experiment Animals by State Science and Technology Commission.The study protocol was approved by the Institutional Animal Care and Use Committee of Tianjin Medical University (No.TJYY2020111028).

ResultsThere were statistically significant differences in the diopter of guinea pigs at different time points among the four groups ( F group=138.892, P<0.001; F time=167.270, P<0.001). Compared with normal control group, the diopter of guinea pigs in FDM group at experiment weeks 2 and 4, and FDM+ atropine group at experiment week 4 developed toward myopia, showing statistically significant differences (all at P<0.001). Compared with FDM group, the diopter of guinea pigs in FDM+ atropine group at experiment weeks 2 and 4 developed toward hyperopia, showing statistically significant differences (both at P<0.001). There were statistically significant differences in the axial length of guinea pigs at different time points among the four groups ( F group=32.346, P<0.001; F time=353.797, P<0.001). The axial lengths of FDM group at experiment weeks 2 and 4 and FDM+ atropine group at experiment week 4 were longer than those of normal control group, and the axial lengths in FDM+ atropine group at experiment weeks 2 and 4 were shorter than those in FDM group, and the differences were statistically significant (all at P<0.001). The collagenous fibers of posterior sclera of guinea pigs were loose and disordered in FDM group, and were regular in FDM+ atropine group.The posterior scleral thickness of normal control group, FDM group, FDM+ atropine group and atropine group was (141.74±16.98), (101.46±9.15), (112.74±6.24) and (134.30±18.19) μm, respectively, with a statistically significant difference ( F=6.709, P=0.005). The posterior sclera was significantly thinner in FDM group than in normal control group and FDM+ atropine group (both at P<0.05). The diameter of posterior scleral collagen fiber gradually increased from inside to outside in normal control group, FDM+ atropine group and atropine group, and the diameters of the inner, middle and outer posterior scleral collagen fibers were smaller in FDM group than in normal control group.Proteomic analysis revealed 85 differentially expressed proteins (fold change>1.30) between FDM group and normal control group, FDM+ atropine group and FDM group, of which 38 were up-regulated and 47 were down-regulated after atropine treatment.Gene Ontology enrichment analysis showed that biological processes mainly involved were biological regulation, cell process, localization and metabolic process.Molecular function mainly involved were binding, catalytic activity, molecular function regulator, structural molecule activity and transporter activity.Cell components mainly involved were in cellular anatomical entity, intracellular and protein-containing complex.

ConclusionsAtropine can increase the diameter of scleral collagen fibers in guinea pigs of FDM model, improve the arrangement of scleral collagen fiber, inhibit scleral thinning.The mechanism of atropine to control myopia progression is closely related to the tight junction between scleral cells, cytoskeleton and extracellular matrix remodeling.

Atropine;Refraction, ocular;Myopia;Form deprivation;Sclera;Histomorphology;Proteomics;Models, animal
Wei Ruihua, Email: nc.defudabe.umtiewr
引用本文

嵇霄雯,宫博腾,祝颖,等. 1%阿托品对豚鼠形觉剥夺性近视进展的防控作用及其机制[J]. 中华实验眼科杂志,2023,41(04):303-311.

DOI:10.3760/cma.j.cn115989-20211026-00584

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
近视是视觉损害的主要原因之一,随着近视患病率的急剧升高,近视人群趋于低龄化 [ 1 ],尤其在新型冠状病毒感染疫情期间,中国儿童近视患病率明显升高,近视风险显著增加 [ 2 ],近视已成为我国重大公共卫生问题及社会问题。阿托品眼用制剂局部应用是目前临床用于控制近视的主要方法之一,多项研究已证实其对青少年近视进展控制和预防的有效性 [ 3 , 4 , 5 ]。一项Meta分析显示,相较于单光镜矫正,高浓度阿托品滴眼液长期点眼可使青少年近视进展量每年减少(0.68±0.14)D,眼轴增长量每年减少(0.21±0.22)mm [ 6 ]。既往研究表明,巩膜变薄、胶原纤维排列紊乱、纤维直径变细、巩膜生物力学性能下降、眼轴增长是近视发生和发展的重要形态学改变 [ 7 , 8 , 9 , 10 ];而阿托品眼用制剂局部应用可防止近视眼巩膜的变薄,促进巩膜细胞外基质合成 [ 11 , 12 ];推测阿托品眼用制剂对近视进展和眼轴增长的抑制作用可能与巩膜组织重塑有关。然而,目前阿托品如何作用于巩膜组织及其潜在的生物学机制等问题尚未阐明。本研究拟观察质量分数1%阿托品对形觉剥夺性近视(form deprivation myopia,FDM)豚鼠巩膜组织形态及超微结构的影响,探讨阿托品对巩膜组织形态学改变及巩膜重塑的作用及潜在机制。
参考文献
[1]
Dong L Kang YK Li Y et al. Prevalence and time trends of myopia in children and adolescents in China:a systemic review and meta-analysis[J]Retina 202040(3)∶399411. DOI: 10.1097/IAE.0000000000002590 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Hu Y Zhao F Ding X et al. Rates of myopia development in young Chinese schoolchildren during the outbreak of COVID-19[J]JAMA Ophthalmol 2021139(10)∶11151121. DOI: 10.1001/jamaophthalmol.2021.3563 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Zhu Q Tang Y Guo L et al. Efficacy and safety of 1% atropine on retardation of moderate myopia progression in Chinese school children[J]Int J Med Sci 202017(2)∶176181. DOI: 10.7150/ijms.39365 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Li FF Kam KW Zhang Y et al. Differential effects on ocular biometrics by 0.05%,0.025%,and 0.01% atropine:low-concentration atropine for myopia progression study[J]Ophthalmology 2020127(12)∶16031611. DOI: 10.1016/j.ophtha.2020.06.004 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Wei S Li SM An W et al. Safety and efficacy of low-dose atropine eyedrops for the treatment of myopia progression in Chinese children:a randomized clinical trial[J]JAMA Ophthalmol 2020138(11)∶11781184. DOI: 10.1001/jamaophthalmol.2020.3820 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Huang J Wen D Wang Q et al. Efficacy comparison of 16 interventions for myopia control in children:a network meta-analysis[J]Ophthalmology 2016123(4)∶697708. DOI: 10.1016/j.ophtha.2015.11.010 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Lin X Wang BJ Wang YC et al. Scleral ultrastructure and biomechanical changes in rabbits after negative lens application[J]Int J Ophthalmol 201811(3)∶354362.
返回引文位置Google Scholar
百度学术
万方数据
[8]
Zi Y Deng Y Zhao J et al. Morphologic and biochemical changes in the retina and sclera induced by form deprivation high myopia in guinea pigs[J/OL]BMC Ophthalmol 202020(1)∶105[2022-09-10]https://pubmed.ncbi.nlm.nih.gov/32178637/. DOI: 10.1186/s12886-020-01377-1 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
McBrien NA Cornell LM Gentle A Structural and ultrastructural changes to the sclera in a mammalian model of high myopia[J]Invest Ophthalmol Vis Sci 200142(10)∶21792187.
返回引文位置Google Scholar
百度学术
万方数据
[10]
Hoang QV Rohrbach D McFadden SA et al. Regional changes in the elastic properties of myopic guinea pig sclera[J/OL]Exp Eye Res 2019186107739[2022-09-10]https://pubmed.ncbi.nlm.nih.gov/31330141/. DOI: 10.1016/j.exer.2019.107739 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Barathi VA Beuerman RW . Molecular mechanisms of muscarinic receptors in mouse scleral fibroblasts:prior to and after induction of experimental myopia with atropine treatment[J]Mol Vis 201117680692.
返回引文位置Google Scholar
百度学术
万方数据
[12]
Cristaldi M Olivieri M Pezzino S et al. Atropine differentially modulates ECM production by ocular fibroblasts,and its ocular surface toxicity is blunted by colostrum[J/OL]Biomedicines 20208(4)∶78[2022-09-11]https://pubmed.ncbi.nlm.nih.gov/32260532/. DOI: 10.3390/biomedicines8040078 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Zhou X Zhang S Zhang G et al. Increased choroidal blood perfusion can inhibit form deprivation myopia in guinea pigs[J/OL]Invest Ophthalmol Vis Sci 202061(13)∶25[2022-09-12]https://pubmed.ncbi.nlm.nih.gov/33211066/. DOI: 10.1167/iovs.61.13.25 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Zou L Liu R Zhang X et al. Upregulation of regulator of G-protein signaling 2 in the sclera of a form deprivation myopic animal model[J]Mol Vis 201420977987.
返回引文位置Google Scholar
百度学术
万方数据
[15]
Gong Q Janowski M Luo M et al. Efficacy and adverse effects of atropine in childhood myopia:a meta-analysis[J]JAMA Ophthalmol 2017135(6)∶624630. DOI: 10.1001/jamaophthalmol.2017.1091 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Yam JC Jiang Y Tang SM et al. Low-concentration atropine for myopia progression (LAMP) study:a randomized,double-blinded,placebo-controlled trial of 0.05%,0.025%,and 0.01% atropine eye drops in myopia control[J]Ophthalmology 2019126(1)∶113124. DOI: 10.1016/j.ophtha.2018.05.029 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Funata M Tokoro T Scleral change in experimentally myopic monkeys[J]Graefe's Arch Clin Exp Ophthalmol 1990228(2)∶174179. DOI: 10.1007/BF00935729 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Ohno-Matsui K Jonas JB . Posterior staphyloma in pathologic myopia[J]Prog Retin Eye Res 20197099109. DOI: 10.1016/j.preteyeres.2018.12.001 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Kim TG Kim W Choi S et al. Effects of scleral collagen crosslinking with different carbohydrate on chemical bond and ultrastructure of rabbit sclera:future treatment for myopia progression[J/OL]PLoS One 201914(5)∶e0216425[2022-09-12]https://pubmed.ncbi.nlm.nih.gov/31083660/. DOI: 10.1371/journal.pone.0216425 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Chen CA Lin PY Wu PC . Treatment effect of posterior scleral reinforcement on controlling myopia progression:a systematic review and meta-analysis[J/OL]PLoS One 202015(5)∶e0233564[2022-09-13]https://pubmed.ncbi.nlm.nih.gov/32453804/. DOI: 10.1371/journal.pone.0233564 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Hsiao YT Chang WA Kuo MT et al. Systematic analysis of transcriptomic profile of the effects of low dose atropine treatment on scleral fibroblasts using next-generation sequencing and bioinformatics[J]Int J Med Sci 201916(12)∶16521667. DOI: 10.7150/ijms.38571 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Harper AR Summers JA . The dynamic sclera:extracellular matrix remodeling in normal ocular growth and myopia development[J]Exp Eye Res 2015133100111. DOI: 10.1016/j.exer.2014.07.015 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Zhou X Ji F An J et al. Experimental murine myopia induces collagen type Ⅰα1 (COL1A1) DNA methylation and altered COL1A1 messenger RNA expression in sclera[J]Mol Vis 20121813121324.
返回引文位置Google Scholar
百度学术
万方数据
[24]
Wang M Yang ZK Liu H et al. Genipin inhibits the scleral expression of miR-29 and MMP2 and promotes COL1A1 expression in myopic eyes of guinea pigs[J]Graefe's Arch Clin Exp Ophthalmol 2020258(5)∶10311038. DOI: 10.1007/s00417-020-04634-7 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Yang Y Wu J Wu D et al. Intravitreal brimonidine inhibits form-deprivation myopia in guinea pigs[J/OL]Eye Vis (Lond) 20218(1)∶27[2022-09-13]https://pubmed.ncbi.nlm.nih.gov/34256866/. DOI: 10.1186/s40662-021-00248-0 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Liu YX Sun Y MMP-2 participates in the sclera of guinea pig with form-deprivation myopia via IGF-1/STAT3 pathway[J]Eur Rev Med Pharmacol Sci 201822(9)∶25412548. DOI: 10.26355/eurrev_201805_14945 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Guo L Frost MR Siegwart JT Jret al. Gene expression signatures in tree shrew sclera during recovery from minus-lens wear and during plus-lens wear[J]Mol Vis 201925311328.
返回引文位置Google Scholar
百度学术
万方数据
[28]
Ding X Fu D Ge S et al. DNA methylation and mRNA expression of IGF-1 and MMP-2 after form-deprivation myopia in guinea pigs[J]Ophthalmic Physiol Opt 202040(4)∶491501. DOI: 10.1111/opo.12696 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Liang L Wang X Zheng Y et al. All-trans-retinoic acid modulates TGF-β-induced apoptosis,proliferation,migration and extracellular matrix synthesis of conjunctival fibroblasts by inhibiting PI3K/AKT signaling[J]Mol Med Rep 201920(3)∶29292935. DOI: 10.3892/mmr.2019.10507 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Penha AM Burkhardt E Schaeffel F et al. Effects of intravitreal insulin and insulin signaling cascade inhibitors on emmetropization in the chick[J]Mol Vis 20121826082622.
返回引文位置Google Scholar
百度学术
万方数据
[31]
Li Y Jiang J Yang J et al. PI3K/AKT/mTOR signaling participates in insulin-mediated regulation of pathological myopia-related factors in retinal pigment epithelial cells[J/OL]BMC Ophthalmol 202121(1)∶218[2022-09-14]https://pubmed.ncbi.nlm.nih.gov/34001063/. DOI: 10.1186/s12886-021-01946-y .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Frost MR Norton TT . Alterations in protein expression in tree shrew sclera during development of lens-induced myopia and recovery[J]Invest Ophthalmol Vis Sci 201253(1)∶322336. DOI: 10.1167/iovs.11-8354 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Yuan Y Zhu C Liu M et al. Comparative proteome analysis of form-deprivation myopia in sclera with iTRAQ-based quantitative proteomics[J]Mol Vis 202127494505.
返回引文位置Google Scholar
百度学术
万方数据
[34]
Li G Huang S Yang S et al. abLIM1 constructs non-erythroid cortical actin networks to prevent mechanical tension-induced blebbing[J/OL]Cell Discov 2018442[2022-09-14]https://pubmed.ncbi.nlm.nih.gov/30062045/. DOI: 10.1038/s41421-018-0040-3 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Wang KK Metlapally R Wildsoet CF . Expression profile of the integrin receptor subunits in the guinea pig sclera[J]Curr Eye Res 201742(6)∶857863. DOI: 10.1080/02713683.2016.1262045 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Tian XD Cheng YX Liu GB et al. Expressions of type Ⅰ collagen,α2 integrin and β1 integrin in sclera of guinea pig with defocus myopia and inhibitory effects of bFGF on the formation of myopia[J]Int J Ophthalmol 20136(1)∶5458.
返回引文位置Google Scholar
百度学术
万方数据
[37]
McBrien NA Metlapally R Jobling AI et al. Expression of collagen-binding integrin receptors in the mammalian sclera and their regulation during the development of myopia[J]Invest Ophthalmol Vis Sci 200647(11)∶46744682. DOI: 10.1167/iovs.05-1150 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Hu S Cui D Yang X et al. The crucial role of collagen-binding integrins in maintaining the mechanical properties of human scleral fibroblasts-seeded collagen matrix[J]Mol Vis 20111713341342.
返回引文位置Google Scholar
百度学术
万方数据
[39]
Yuan Y Li M To CH et al. The role of the RhoA/ROCK signaling pathway in mechanical strain-induced scleral myofibroblast differentiation[J]Invest Ophthalmol Vis Sci 201859(8)∶36193629. DOI: 10.1167/iovs.17-23580 .
返回引文位置Google Scholar
百度学术
万方数据
[40]
Leinhos L Peters J Krull S et al. Hypoxia suppresses myofibroblast differentiation by changing RhoA activity[J/OL]J Cell Sci 2019132(5)∶jcs223230[2022-09-14]https://pubmed.ncbi.nlm.nih.gov/30659117/. DOI: 10.1242/jcs.223230 .
返回引文位置Google Scholar
百度学术
万方数据
[41]
Comer SP . Turning platelets off and on:role of RhoGAPs and RhoGEFs in platelet activity[J/OL]Front Cardiovasc Med 20218820945[2022-09-15]https://pubmed.ncbi.nlm.nih.gov/35071371/. DOI: 10.3389/fcvm.2021.820945 .
返回引文位置Google Scholar
百度学术
万方数据
[42]
Matera DL Lee AT Hiraki HL et al. The role of Rho GTPases during fibroblast spreading,migration,and myofibroblast differentiation in 3D synthetic fibrous matrices[J]Cell Mol Bioeng 202114(5)∶381396. DOI: 10.1007/s12195-021-00698-5 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
魏瑞华,Email: nc.defudabe.umtiewr
B

嵇霄雯:参与选题、研究实施、数据收集及整理分析、论文写作;宫博腾:参与选题、实施研究;祝颖:研究设计;鹿大千、刘勋:实施研究;刘琳、杜蓓:论文智力性内容修改;魏瑞华:参与选题、研究设计及定稿

C
所有作者均声明不存在利益冲突
D
天津市教委科研计划项目 (2020KJ177)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号