人工智能在口腔医学中的应用
ENGLISH ABSTRACT
基于深度学习的多分类正畸图像识别研究
王少烽
谢贤聚
张莉
常荍
左飞飞
王亚杰
白玉兴
作者及单位信息
·
DOI: 10.3760/cma.j.cn112144-20230305-00070
Research on multi-class orthodontic image recognition system based on deep learning network model
Wang Shaofeng
Xie Xianju
Zhang Li
Chang Qiao
Zuo Feifei
Wang Yajie
Bai Yuxing
Authors Info & Affiliations
Wang Shaofeng
Department of Orthodontics, Capital Medical University School of Stomatology, Beijing 100050, China
Xie Xianju
Department of Orthodontics, Capital Medical University School of Stomatology, Beijing 100050, China
Zhang Li
Department of Orthodontics, Capital Medical University School of Stomatology, Beijing 100050, China
Chang Qiao
Department of Orthodontics, Capital Medical University School of Stomatology, Beijing 100050, China
Zuo Feifei
LargeV Instrument Corp., Ltd, Beijing 100084, China
Wang Yajie
LargeV Instrument Corp., Ltd, Beijing 100084, China
Bai Yuxing
Department of Orthodontics, Capital Medical University School of Stomatology, Beijing 100050, China
·
DOI: 10.3760/cma.j.cn112144-20230305-00070
1716
329
0
0
7
1
PDF下载
APP内阅读
摘要

目的基于深度学习开发用于正畸图像数据自动分类的多分类正畸图像识别模型,为正畸图像数据管理提供参考。

方法收集2020年10至11月和2021年6至7月首都医科大学口腔医学院正畸科采集的35 000张正畸临床图像,图像全部来自于490例正畸治疗患者,男女性别比例为49∶51,年龄范围为4~45岁。根据纳入及排除标准进行数据清洗,最终纳入数据集中的图像数据包括面像17 453张(包括正面像、正面微笑像、右侧90°面像、左侧90°面像、右侧45°面像和左侧45°面像)、口内像8 026张[包括正面 像、右侧 像、左侧 像、上颌 面像(原始)、上颌 面像(翻转后)、下颌 面像(原始)、下颌 面像(翻转后)、覆 覆盖像]、X线片4 115张[包括头颅侧位X线片(左侧)、头颅侧位X线片(右侧)、头颅正位X线片、曲面体层X线片以及手腕骨X线片]、其他非正畸图像684张。由正畸专业博士研究生、副主任医师、主任医师共同组成标注团队,使用图像标注工具对正畸图像进行分类标注。图像类别包括6类面像、8类口内像、5类X线片以及其他图像,共计20种分类标签。每个标签的数据按8∶1∶1的比例利用Pthyon计算机语言中的Random函数随机分为训练集、验证集和测试集,使用改进的SqueezeNet网络(一种深度学习模型)进行训练,使用ImageNet自然图片开源数据集中的13 000张作为额外的非正畸图像进行异常数据处理的算法优化,构建基于深度学习模型的多分类正畸图像识别模型。根据测试集的预测结果,利用精确率、召回率、F1分数以及混淆矩阵作为正畸图像分类准确性的指标,评价该模型的预测能力。使用梯度加权分类激活映射方法生成热力图,验证该模型进行图像分类判断逻辑的可靠性。

结果通过数据清洗和标签标注,共30 278张正畸图像纳入数据集。测试集分类结果显示,多数分类标签的精确率、召回率以及F1分数为100%,3 047张图像中仅5张分类错误,模型精确率达99.84%(3 042/3 047)。而异常数据处理的精确率达100%(10 500/10 500)。热力图显示,多分类正畸图像识别模型在图像分类过程中的判断依据与人类在判断该图像分类时基本一致。

结论本项研究基于改进后的SqueezeNet网络构建了一种可用于20种正畸图像自动分类的多分类正畸图像识别模型,该模型的图像分类准确性较好。

视频摘要
针对正畸临床诊疗过程中图像数据整理困难以及各类人工智能算法训练过程中的数据依赖特征,本研究基于改进后的SqueezeNet网络构建了一种可用于20种正畸图像自动分类的多分类正畸图像识别模型,该模型的图像分类准确性较好。
人工智能;正畸学;病案系统,计算机化;图像处理,计算机辅助;深度学习
ABSTRACT

ObjectiveTo develop a multi-classification orthodontic image recognition system using the SqueezeNet deep learning model for automatic classification of orthodontic image data.

MethodsA total of 35 000 clinical orthodontic images were collected in the Department of Orthodontics, Capital Medical University School of Stomatology, from October to November 2020 and June to July 2021. The images were from 490 orthodontic patients with a male-to-female ratio of 49∶51 and the age range of 4 to 45 years. After data cleaning based on inclusion and exclusion criteria, the final image dataset included 17 453 face images (frontal, smiling, 90° right, 90° left, 45° right, and 45° left), 8 026 intraoral images [frontal occlusion, right occlusion, left occlusion, upper occlusal view (original and flipped), lower occlusal view (original and flipped) and coverage of occlusal relationship], 4 115 X-ray images [lateral skull X-ray from the left side, lateral skull X-ray from the right side, frontal skull X-ray, cone-beam CT (CBCT), and wrist bone X-ray] and 684 other non-orthodontic images. A labeling team composed of orthodontic doctoral students, associate professors, and professors used image labeling tools to classify the orthodontic images into 20 categories, including 6 face image categories, 8 intraoral image categories, 5 X-ray image categories, and other images. The data for each label were randomly divided into training, validation, and testing sets in an 8∶1∶1 ratio using the random function in the Python programming language. The improved SqueezeNet deep learning model was used for training, and 13 000 natural images from the ImageNet open-source dataset were used as additional non-orthodontic images for algorithm optimization of anomaly data processing. A multi-classification orthodontic image recognition system based on deep learning models was constructed. The accuracy of the orthodontic image classification was evaluated using precision, recall, F1 score, and confusion matrix based on the prediction results of the test set. The reliability of the model′s image classification judgment logic was verified using the gradient-weighted class activation mapping (Grad-CAM) method to generate heat maps.

ResultsAfter data cleaning and labeling, a total of 30 278 orthodontic images were included in the dataset. The test set classification results showed that the precision, recall, and F1 scores of most classification labels were 100%, with only 5 misclassified images out of 3 047, resulting in a system accuracy of 99.84%(3 042/3 047). The precision of anomaly data processing was 100% (10 500/10 500). The heat map showed that the judgment basis of the SqueezeNet deep learning model in the image classification process was basically consistent with that of humans.

ConclusionsThis study developed a multi-classification orthodontic image recognition system for automatic classification of 20 types of orthodontic images based on the improved SqueezeNet deep learning model. The system exhibitted good accuracy in orthodontic image classification.

Artificial intelligence;Orthodontics;Medical records systems, computerized;Image processing, computer-assisted;Deep learning
Bai Yuxing, Email: tendef.3ab62gnixuyb, Tel: 0086-10-67059069
引用本文

王少烽,谢贤聚,张莉,等. 基于深度学习的多分类正畸图像识别研究[J]. 中华口腔医学杂志,2023,58(06):561-568.

DOI:10.3760/cma.j.cn112144-20230305-00070

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
目前,人工智能技术已在医学影像分析、临床诊疗决策、药品研发、医疗智能管理等领域逐步开始辅助人类医师进行诊疗实践 1 , 2 , 3 , 4 , 5。在口腔正畸领域,基于人工智能技术开发的头颅侧位X线片标志点自动识别、数字化牙颌模型自动分割及标志点自动识别、矫治方案辅助设计、骨龄诊断等技术已逐步进入临床应用 6 , 7 , 8 , 9 , 10
口腔正畸诊疗过程中需要采集大量的临床图像数据,每例正畸患者完整的图像资料应包含但不限于每个治疗阶段的多角度软组织面像、口内像以及二维X线片。每例患者治疗前、中、后以及保持阶段的图像数据十分重要 11。传统的手动图像整理方式具有分拣效率低、易造成数据遗漏和错误、多源数据难整合等问题。而良好的图像管理可提高医师的数据整理效率,减少数据丢失风险。随着人工智能辅助正畸诊疗技术的发展,自动化正畸临床数据管理可为数据集的构建提供便捷。但深度学习模型的构建需要大量临床数据作为模型训练和验证样本,因此开发用于正畸图像数据管理的多分类图像识别算法也为各类人工智能正畸诊疗数据处理提供便捷 12。针对正畸临床诊疗过程中图像数据整理困难以及各类人工智能算法训练过程中的数据依赖特征,本项研究基于SqueezeNet网络(一种深度学习模型),开发一种用于正畸图像数据自动分类的多分类正畸图像识别模型,以期为正畸图像管理提供参考。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Hosny A , Parmar C , Quackenbush J ,et al. Artificial intelligence in radiology[J]. Nat Rev Cancer, 2018,18(8):500-510. DOI: 10.1038/s41568-018-0016-5 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Sun R , Deutsch E , Fournier L . Artificial intelligence and medical imaging[J]. Bull Cancer, 2022,109(1):83-88. DOI: 10.3748/wjg.v25.i6.672 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Noorbakhsh-Sabet N , Zand R , Zhang Y ,et al. Artificial intelligence transforms the future of health care[J]. Am J Med, 2019,132(7):795-801. DOI: 10.1016/j.amjmed.2019.01.017 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Hessler G , Baringhaus KH . Artificial intelligence in drug design[J]. Molecules, 2018,23(10):2520. DOI: 10.3390/molecules23102520 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Stanfill MH , Marc DT . Health information management: implications of artificial intelligence on healthcare data and information management[J]. Yearb Med Inform, 2019,28(1):56-64. DOI: 10.1055/s-0039-1677913 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Subramanian AK , Chen Y , Almalki A ,et al. Cephalometric analysis in orthodontics using artificial intelligence: a comprehensive review[J]. Biomed Res Int, 2022,2022:1880113. DOI: 10.1155/2022/1880113 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Lian C , Wang L , Wu TH ,et al. Deep multi-scale mesh feature learning for automated labeling of raw dental surfaces from 3D intraoral scanners[J]. IEEE Trans Med Imaging, 2020,39(7):2440-2450. DOI: 10.1109/TMI.2020.2971730 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Wu TH , Lian C , Lee S ,et al. Two-stage mesh deep learning for automated tooth segmentation and landmark localization on 3D intraoral scans[J]. IEEE Trans Med Imaging, 2022,41(11):3158-3166. DOI: 10.1109/TMI.2022.3180343 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Khanagar SB , Al-Ehaideb A , Vishwanathaiah S ,et al. Scope and performance of artificial intelligence technology in orthodontic diagnosis, treatment planning, and clinical decision-making: a systematic review[J]. J Dent Sci, 2021,16(1):482-492. DOI: 10.1016/j.jds.2020.05.022 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Lee BD , Lee MS . Automated bone age assessment using artificial intelligence: the future of bone age assessment[J]. Korean J Radiol, 2021,22(5):792-800. DOI: 10.3348/kjr.2020.0941 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Chung CH , Tadlock LP , Barone N ,et al. American board of orthodontics: time for change[J]. Am J Orthod Dentofacial Orthop, 2018,153(3):321-323. DOI: 10.1016/j.ajodo.2017.12.005 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Yang YC , Islam SU , Noor A ,et al. Influential usage of big data and artificial intelligence in healthcare[J]. Comput Math Methods Med, 2021,2021:5812499. DOI: 10.1155/2021/5812499 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Hu J , Shen L , Albanie S ,et al. Squeeze-and-excitation networks[J]. IEEE Trans Pattern Anal Mach Intell, 20 20 ,42(8):2011-2023. DOI: 10.1109/TPAMI.2019.2913372 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Allareddy V , Rengasamy Venugopalan S , Nalliah RP ,et al. Orthodontics in the era of big data analytics[J]. Orthod Craniofac Res, 2019,22:Suppl 1-8. 13DOI: 10.1111/ocr.12279 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Jordan MI , Mitchell TM . Machine learning: trends, perspectives, and prospects[J]. Science, 2015,349(6245):255-260. DOI: 10.1126/science.aaa8415 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Chang Q , Wang Z , Wang F ,et al. Automatic analysis of lateral cephalograms based on high-resolution net[J]. Am J Orthod Dentofacial Orthop, 2023,163(4):501-508.e4. DOI: 10.1016/j.ajodo.2022.02.020 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Junaid N , Khan N , Ahmed N ,et al. Development, application, and performance of artificial intelligence in cephalometric landmark identification and diagnosis: a systematic review[J]. Healthcare (Basel), 2022,10(12):2454. DOI: 10.3390/healthcare10122454 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Takeda S , Mine Y , Yoshimi Y ,et al. Landmark annotation and mandibular lateral deviation analysis of posteroanterior cephalograms using a convolutional neural network[J]. J Dent Sci, 2021,16(3):957-963. DOI: 10.1016/j.jds.2020.10.012 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Zhou J , Zhou H , Pu L ,et al. Development of an artificial intelligence system for the automatic evaluation of cervical vertebral maturation status[J]. Diagnostics (Basel), 2021,11(12):2200. DOI: 10.3390/diagnostics11122200 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Kök H , Izgi MS , Acilar AM . Determination of growth and development periods in orthodontics with artificial neural network[J]. Orthod Craniofac Res, 2021,24:Suppl 2-76. 83DOI: 10.1111/ocr.12443 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Li S , Guo Z , Lin J ,et al. Artificial intelligence for classifying and archiving orthodontic images[J]. Biomed Res Int, 2022,2022:1473977. DOI: 10.1155/2022/1473977 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Chen SL , Chen TY , Huang YC ,et al. Missing teeth and restoration detection using dental panoramic radiography based on transfer learning iith CNNs[J]. IEEE Access, 2022,10:118654-64. DOI: 10.1109/ACCESS.2022.3220335 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
YY/T 1833.3-2022 人工智能医疗器械 质量要求和评价 第3部分: 数据标注通用要求[S]. 北京:中国标准出版社, 2022.
YY/T 1833.3-2022 Artificial intelligence medical device: quality requirements and evaluation: part 3: general requirement for data annotation[S]. Beijing:Standards Press of China, 2022.
[24]
He T , Guo J , Chen N ,et al. MediMLP: using Grad-CAM to extract crucial variables for lung cancer postoperative complication prediction[J]. IEEE J Biomed Health Inform, 2020,24(6):1762-1771. DOI: 10.1109/JBHI.2019.2949601 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
白玉兴,Email: tendef.3ab62gnixuyb,电话:010-67059069
B

王少烽:研究酝酿、设计和实施,数据采集、分析和解释,文章撰写和修改;谢贤聚:研究酝酿和设计、文章审阅和修改;张莉:研究酝酿、设计和实施,数据采集和统计分析,文章撰写;常荍:数据采集、分析和解释;左飞飞:研究实施、数据采集、文章撰写;王亚杰:统计分析;白玉兴:研究酝酿和设计、文章审阅和修改

C
王少烽, 谢贤聚, 张莉, 等. 基于深度学习的多分类正畸图像识别研究[J]. 中华口腔医学杂志, 2023, 58(6): 561-568. DOI: 10.3760/cma.j.cn112144-20230305-00070.
D
所有作者声明不存在利益冲突
E
北京市自然科学基金-海淀原始创新联合基金 (L222024)
首都医科大学附属北京口腔医院创新团队建设项目 (CXTD202203)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号